首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型 f(χ1,χ2,…χn)=χiχj (1)用矩阵乘积的形式写出此二次型. (2)f(χ1,χ2,…,χn)的规范形和XTAX的规范形是否相同?为什么?
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型 f(χ1,χ2,…χn)=χiχj (1)用矩阵乘积的形式写出此二次型. (2)f(χ1,χ2,…,χn)的规范形和XTAX的规范形是否相同?为什么?
admin
2018-11-23
74
问题
设A是一个可逆实对称矩阵,记A
ij
是它的代数余子式.二次型
f(χ
1
,χ
2
,…χ
n
)=
χ
i
χ
j
(1)用矩阵乘积的形式写出此二次型.
(2)f(χ
1
,χ
2
,…,χ
n
)的规范形和X
T
AX的规范形是否相同?为什么?
选项
答案
(1)由于A是实对称矩阵,它的代数余子式A
ij
=A
ji
,[*],并且A
-1
也是实对称矩阵,其(i,j)位的元素就是A
ij
/|A|,于是f(χ
1
,χ
2
,…,χ
n
)=X
T
A
-1
X. (2)A
-1
的特征值和A的特征值互为倒数关系,因此A
-1
和A的正的特征值的个数相等,负的特征值的个数也相等,于是它们的正,负惯性指数都相等,从而A
-1
和A合同,f(χ
1
,χ
2
,…,χ
n
)和X
T
AX有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/K2M4777K
0
考研数学一
相关试题推荐
设函数y=f(x)由方程y-x=ex(1-y)确定,则=__________。
通过直线x=2t一1,y=3t+2,z=2t一3和直线x=2t+3,y=3t一1,z=2t+1的平面方程为
设向量组(I):α1,α2,…,αr线性无关,且(I)可由(Ⅱ):β1,β2,…,βs线性表示.证明:在(Ⅱ)中至少存在一个向量βj,使得βj,α2,…,αr线性无关.
(02年)计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1}.
(06年)已知非齐次线性方程组有3个线性无关的解.(I)证明方程组系数矩阵A的秩r(A)=2;(Ⅱ)求a,b的值及方程组的通解.
(05年)如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是由线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx.
二次型f(x1,x2,x3)=(x1+x2)2+(2x1+3x2+x3)2-5(x2+x3)2的规范形是()
求数列极限xn,其中xn=n[e(1+)-n-1].
设对一切的x,有f(x+1)=2f(x),且当x∈[0,1]时f(x)=x(x2一1),讨论函数f(x)在x=0处的可导性.
设求f[g(x)]
随机试题
供给弹性较大、需求弹性较小的商品的税负不易转嫁。()
临床治疗应“先安未受邪之地”,体现的原则是
女性,32岁,有心脏病4年,最近感到心悸,听诊发现心率100次/分,律不齐,第一心音强弱不等,心尖部有舒张期隆隆样杂音。听诊的发现最可能是
患儿,9岁。4周前上呼吸道感染,持续发热,膝关节肿胀疼痛,后背部见淡红色环形斑块,压之褪色。查体:C反应蛋白阳性,血沉增高。该疾病关节炎典型的特点是
樊某、宋某共同犯罪被起诉,2005年4月2日,法院判决宣告处樊某和宋某各8年有期徒刑,樊某提起上诉,则下列说法正确的是:
按照编制程序和用途,建筑工程定额分为()。
在当代,法国负责监督宪法实施的机关是()。
SinceHenryFordturneditintoamass-marketproductacenturyago,thecarhasdeliveredmanybenefits.Ithas【C1】______econom
下列叙述中正确的是
Since2007,theAmericanPsychologicalAssociation(APA)hasconductedasurveyofdifferentaspectsofstressinAmerica,Thisye
最新回复
(
0
)