首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知P-1AP=,α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
已知P-1AP=,α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
admin
2019-03-11
71
问题
已知P
-1
AP=
,α
1
是矩阵A属于特征值λ=2的特征向量,α
2
,α
3
是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
选项
A、[α
1
,-α
2
,α
3
]
B、[α
1
,α
2
+α
3
,α
2
-2α
3
]
C、[α
1
,α
3
,α
2
]
D、[α
1
+α
2
,α
1
-α
2
,α
3
]
答案
D
解析
若P
-1
AP=A=
,P=[α
1
,α
2
,α
3
],则有AP=PA,即
A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
]
即
[Aα
1
,Aα
2
,Aα
3
]=[a
1
α
1
,a
2
α
2
,a
3
α
3
].
可见α
i
是矩阵A属于特征值α
i
的特征向量(i=1,2,3),又因矩阵P可逆,因此,α
1
,α
2
,α
3
线性无关.
若α是属于特征值λ的特征向量,则一α仍是属于特征值λ的特征向量,故(A)正确.
若α,β是属于特征值λ的特征向量,则k
1
α+k
2
β仍是属于特征值λ的特征向量.本题中,α
2
,α
3
是属于λ=6的线性无关的特征向量,故α
2
+α
3
,α
2
—2α
3
仍是λ=6的特征向量,并且α
2
+α
3
,α
2
—2α
3
线性无关,故(B)正确.
关于(C),因为α
2
,α
3
均是λ=6的特征向量,所以α
2
,α
3
谁在前谁在后均正确.即(C)正确.
由于α
1
,α
2
是不同特征值的特征向量,因此α
1
+α
2
,α
1
一α
2
不再是矩阵A的特征向量,故(D)错误.
转载请注明原文地址:https://kaotiyun.com/show/K3P4777K
0
考研数学三
相关试题推荐
求函数M=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值。
设二维随机变量(X,Y)的联合分布律为则在Y=1的条件下求随机变量X的条件概率分布.
设某种元件的寿命为随机变量且服从指数分布。这种元件可用两种方法制得,所得元件的平均寿命分别为100和150(小时),而成本分别为C和2C元。如果制造的元件寿命不超过200小时,则须进行加工,费用为100元。为使平均费用较低,问C取何值时,用第2种方法较好?
观察下列函数在自变量的给定变化趋势下是否有极限,如有极限,写出它们的极限.
设α1,α2,…,αs和β1β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1β2,…,βt线性无关.
将下列函数展成麦克劳林级数并指出展开式成立的区间:(Ⅰ)ln(1+x+x2);(Ⅱ)arctan.
判断如下命题是否正确:设无穷小un~vn(n→∞),若级数vn也收敛.证明你的判断.
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,记Y=n(X1一2X2)2+b(3X3—4X4)2,其中a,b为常数,已知Y~χ2(n),则
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(B);④若r(
设F(x)=∫xx+2πesintsintdt,则F(x)()
随机试题
贵重的且时间要求急的商品最适宜采用()
肝功能减退患者可以按原剂量使用的抗菌药物是()。
构成业务网的主要技术要素包括()。
送客服务中,若系乘飞机离境的旅游团,地陪应提醒或协助领队提前()小时确认机票。
能溶于液体的物质是()觉适宜刺激的主要特点。
下列行为载体所承载的行政行为中属于具体行政行为的是()。
得陇望蜀:狼子野心
=_______.
Iwantedtoknowwhenthey______cometoseeme.
Whatisthemainreasonforhavingthefair?
最新回复
(
0
)