首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
admin
2018-11-23
45
问题
设A为n阶矩阵,α
1
为AX=0的一个非零解,向量组α
2
,…,α
s
满足A
i-1
α
i
=α
1
(i=2,3,…,s).证明α
1
,α
2
,…,α
s
线性无关.
选项
答案
设c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0(1),要推出系数c
i
都为0. 条件说明A
i
α
i
=Aα
1
=0 (i=1,2,3,…,s). 用A
s-1
乘(1)的两边,得c
s
α
1
=0,则c
s
=0. 再用A
s-2
乘(1)的两边,得c
s-1
α
1
=0,则c
s-1
=0. 这样可逐个得到每个系数都为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/K6M4777K
0
考研数学一
相关试题推荐
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2),≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于(
设函数f(x)在x=x0处存在f′+(x0)与f′-(x0),但f′+(x0)≠f′-(x0),说明这一事实的几何意义.
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵.
设二维随机变量(X,Y)的概率密度为求常数A及条件概率密度fY|X(y|x).
设某种零件的长度L~N(18,4),从一大批这种零件中随机取出10件,求这10件中长度在16~22之间的零件数X的概率分布、数学期望和方差.
设随机变量X的概率密度为,-∞<x<+∞,求:(1)常数C;(2)X的分布函数F(x)和P{0≤X≤1};(3)Y=e-|X|的概率密度fY(y).
设A、B均是n阶矩阵,且|A|=2,|B|=一3,A*为A的伴随矩阵,则行列式|2A*B-1|=_____.
设的一个特征值为3.(1)求y的值;(2)求可逆方阵P,使(AP)T(AP)为对角阵.
(01年)已知3阶矩阵A与3维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x.(1)记P=(xAxA2x),求3阶矩阵B,使A=PBP-1;(2)计算行列式|A+E|.
设n(n≥2)阶行列式D=,则()
随机试题
A.≥140°B.<140°C.>110°D.≤110°髋外翻的颈干角范围是
卵巢癌一线化疗方案为
有关血胸下列哪些描述是正确的
在一栏待宰的100头牲猪中,发现有一头患有口蹄疫,其正确的处理方法是
环境空气质量现状调查资料来源分()途径。
根据《合同法》,关于要约与承诺的说法,错误的有()。
在社会经济运行中,当通货膨胀率上升时,一般会导致()。
设函数f(x)(x≥0)连续可导,且f(0)=1.又已知曲线y=f(x)、x轴、y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积值与曲线y=f(x)在[0,x]上的一段弧长值相等,求f(x).
MigrantworkersInthepasttwentyyears,therehasbeenanincreasingtendencyforworkerstomovefromonecountrytoan
Ifyouhaveatinyroomthatyou’rethinkingaboutasabedroomforyourchildoraguest,gettingthemostoutofasmallspace
最新回复
(
0
)