设f(χ)在[0,1]上连续可导,f(1)=0,∫01χf′(χ)dχ=2,证明:存在ξ∈[0,1],使得f′(ξ)=4.

admin2020-07-31  8

问题 设f(χ)在[0,1]上连续可导,f(1)=0,∫01χf′(χ)dχ=2,证明:存在ξ∈[0,1],使得f′(ξ)=4.

选项

答案由分部积分,得 [*], 于是∫01f(χ)dχ=-2. 由拉格朗日中值定理,得f(χ)=f(χ)-f(1)=f′(η)(χ-1),其中η∈(χ,1), f(χ)=f′(η)(χ-1)两边对χ从0到1积分,得∫01f(χ)dχ=∫01f′(η)(χ-1)dχ=-2. 因为f′(χ)在[0.1]上连续,所以f′(χ)在[0,1]上取到最小值m和最大值M, 由M(χ-1)≤f′(η)(χ-1)≤m(χ-1)两边对χ从0到1积分, 得[*],即m≤4≤M,由介值定理,存在ξ∈[0,1],使得f′(ξ)=4.

解析
转载请注明原文地址:https://kaotiyun.com/show/KG84777K
0

最新回复(0)