首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,r(A)=n,则下列结论不正确的是( ).
设A是m×n矩阵,r(A)=n,则下列结论不正确的是( ).
admin
2019-06-29
51
问题
设A是m×n矩阵,r(A)=n,则下列结论不正确的是( ).
选项
A、若AB=O,则B=O
B、对任意矩阵B,有r(AB)=r(B)
C、存在B,使得BA=E
D、对任意矩阵B,有r(BA)=r(B)
答案
D
解析
因为r(A)=n,所以方程组AX=0只有零解,而由AB=O得B的列向量为方程组AX=0的解,故若AB=O,则B=O;
令BX=0,ABX=0为两个方程组,显然若BX=0,则ABX=0,反之,若ABX=0,因为r(A)=n,所以方程组AX=0只有零解,于是BX=0,即方程组BX=0与ABX=0为同解方程组,故r(AB)=r(B);
因为r(A)=n,所以A经过有限次初等行变换化为
,即存在可逆矩阵P使得PA=
,令B=(E
n
O)P,则BA=E;
令A=
,B=(1 1 1),r(A)=1,但r(BA)=0≠r(B)=1,选D.
转载请注明原文地址:https://kaotiyun.com/show/KKV4777K
0
考研数学二
相关试题推荐
2
设有二重特征根,则a=__________.
设f(x)为连续函数,且满足∫01f(xt)dt=f(x)+xsinx,则f(x)=_______.
设向量组线性无关,则a,b,c必满足关系式_______.
向量组α1=[0,4,2-k],α2=[2,3-k,1],α3=[1-k,2,3]线性相关,则实数k=_______.
设矩阵A=,E为二阶单位矩阵,矩阵B满足BA=B+2E,则|B|=________。
设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵。若|A|=2,|B|=3,则分块矩阵的伴随矩阵为()
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。令P=(α1,α2,α3),求P-1AP。
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,f(x)/x<0。证明:(Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;(Ⅱ)方程f(x)f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根。
设由方程φ(bz-cy,cx-az,ay-bx)=0(*)确定隐函数z=z(x,y),其中φ对所有变量有连续偏导数,a,b,c为非零常数,且bφ’1-aφ’2≠0,求
随机试题
内脏损伤后,防治休克的措施是
患者,男,42岁。患慢性阑尾炎3年,经常反复发作,发时右下腹隐隐疼痛,痛处固定不移,腹皮微急,伴轻度恶心欲吐,便干溲黄,舌苔薄黄,脉弦。治疗应首选( )。
招标投标制度在大胆探索和创立时期具有的特点包括()。
折旧率随着使用年限的变化而变化的固定资产折旧计算方法是()。
飞机库的每个防火分区至少应有两个直通室外的安全出口,其最远工作地点到安全出口的距离不应大于()m。
关于奥肯定律的含义和作用的说法,正确的有()。
学校开展各类活动的最基本的基础组织是()。
在法国小学用汉语教数学体现了沉浸式外语教学的理念.()
简述新闻价值的五要素。(四川大学2014年研)相关试题:(1)怎样理解新闻价值要素中的“重要性”?请结合一些典型新闻报道举例说明。(中山大学2015年研)(2)简述新闻价值构成要素。(广西大学2018年研;中南财大2010年研;厦门大学2009年研)
Smallbusinessownersmustaccepttheburdensofentrepreneurship.Beinginbusinessforyour-selfrequiresyourfullattention
最新回复
(
0
)