首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 证明n阶矩阵与相似.[img][/img]
[2014年] 证明n阶矩阵与相似.[img][/img]
admin
2019-04-08
75
问题
[2014年] 证明n阶矩阵
与
相似.[img][/img]
选项
答案
记[*],因A为实对称矩阵,必可对角化.由|λE—A |=λ
n
一nλ
n-1
=(λ一n)λ
n-1
=0可知A的特征值为n,0,0,…,0(n—1个零特征值),故A~diag(n,0,0,…,0)=A. 又由|λE一B|=(λ-n)λ
n-1
=0可知B的特征值为n,0,0,…,0(n一1个零特征值). 当λ=0时,秩(0E一B)=秩(B)=1,则n=秩(0E—B)=n一1,即齐次方程组(0E—B)X=0有n—1个线性无关的解,亦即λ=0时,B有n一1个线性无关的特征向量. 又λ=n时,秩(nE-B)=n一1,则n一秩(nE一B)=n一(n一1)=1,即齐次方程组(nE—B)X=0有一个线性无关的解,亦即B的属于特征值λ=n的线性无关的特征向量只有一个,从而B有n个线性无关的特征向量,于是B必与对角矩阵相似,且B~A=diag(n,0,0,…,0). 由相似的传递性A~Λ~B,得到A~B. 或由A~Λ知,存在可逆矩阵P
1
使P
1
-1
AP
1
=Λ;由B~Λ知,存在可逆矩阵P
1
使 P
2
-1
BP
2
=Λ,于是由P
1
-1
AP
1
=P
2
-1
BP
2
得到P
2
P
1
-1
AP
1
P
2
-1
=(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B.令P=P
1
P
2
-1
,则P可逆,且使P
-1
AP=B,因而A~B.
解析
转载请注明原文地址:https://kaotiyun.com/show/KP04777K
0
考研数学一
相关试题推荐
(2008年)f(x)=1一x2(0≤x≤π)展开成(以2π为周期的)余弦级数,并求级数的和。
(2005年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:(I)存在ξ∈(0,1),使得f(ξ)=1一ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1。
(2006年)点(2,1,0)到平面3x+4y+5z=0的距离d=____________。
(1998年)设z=f(xy)+yφ(x+y),f,φ具有二阶连续导数,则
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0,证明:向量组α,Aα,…,Ak-1α是线性无关的。
设二维随机变量(X,Y)的概率密度为f(x,y)=,—∞<x<+∞,—∞<y<+∞,求常数A及条件概率密度fY|X(Y|x)。
设总体X的概率密度为其中参数θ(0<0<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。(Ⅰ)求参数θ的矩估计量;(Ⅱ)判断是否为θ2的无偏估计量,并说明理由。
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1围成平面图形为D2.(1)求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求此时的D1+D2.
计算曲面积分(x3+z)dydz+(y3+x)dzdx+dxdy,其中∑是曲线(|x|≤1)绕z轴旋转一周所得到的曲面,取外侧.
[2012年]设∑={(x,y,z)|x+y+z=1,x≥0,y≥0,z≥0},则y2dS=______.
随机试题
下面不属于个人行为规范的是()。
以一个街道、一个乡或一个区为范围,将这个社区里的机关、企业、学校等组织起来,共同关心这个社区内的年轻一代的教育,这种教育是()
A.空肠或回肠B.回盲部C.直肠及乙状结肠D.左侧结肠E.末端回肠
男,60岁,排尿困难1年余,逐渐加重。尿镜检:RBC(++)。膀胱造影示膀胱颈部正中向膀胱内膨出,边缘光滑,界限清的充盈缺损。应诊断为
下列选项中,( )不是企业人员配备工作应遵循的原则。
保证工程项目管理信息系统正常运行的基础是()。
深圳证券交易所的权益类证券大宗交易、债券大宗交易(除公司债券外),协议平台的成交确认时间为每个交易日()。
吴某冒充某知名媒体记者,以曝光W公司的违法行为相要挟,获得了W公司巨额现金。吴某的行为构成()。
A、 B、 C、 A这道题用否定疑问句的方式来询问是否是电话铃响了,(A)项的回答“谢谢你,我刚才没听见”是符合题意的。(B)项使用了由题干中phone易联想到的call来迷惑考生。(C)项使用题干中出现的ring来干扰
A、Bytalkingtothelocalofficers.B、Byadvertisingontheschoolpaper.C、Byturningtoseniorstudents.D、Byinvitingsomeex
最新回复
(
0
)