首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 证明n阶矩阵与相似.[img][/img]
[2014年] 证明n阶矩阵与相似.[img][/img]
admin
2019-04-08
31
问题
[2014年] 证明n阶矩阵
与
相似.[img][/img]
选项
答案
记[*],因A为实对称矩阵,必可对角化.由|λE—A |=λ
n
一nλ
n-1
=(λ一n)λ
n-1
=0可知A的特征值为n,0,0,…,0(n—1个零特征值),故A~diag(n,0,0,…,0)=A. 又由|λE一B|=(λ-n)λ
n-1
=0可知B的特征值为n,0,0,…,0(n一1个零特征值). 当λ=0时,秩(0E一B)=秩(B)=1,则n=秩(0E—B)=n一1,即齐次方程组(0E—B)X=0有n—1个线性无关的解,亦即λ=0时,B有n一1个线性无关的特征向量. 又λ=n时,秩(nE-B)=n一1,则n一秩(nE一B)=n一(n一1)=1,即齐次方程组(nE—B)X=0有一个线性无关的解,亦即B的属于特征值λ=n的线性无关的特征向量只有一个,从而B有n个线性无关的特征向量,于是B必与对角矩阵相似,且B~A=diag(n,0,0,…,0). 由相似的传递性A~Λ~B,得到A~B. 或由A~Λ知,存在可逆矩阵P
1
使P
1
-1
AP
1
=Λ;由B~Λ知,存在可逆矩阵P
1
使 P
2
-1
BP
2
=Λ,于是由P
1
-1
AP
1
=P
2
-1
BP
2
得到P
2
P
1
-1
AP
1
P
2
-1
=(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B.令P=P
1
P
2
-1
,则P可逆,且使P
-1
AP=B,因而A~B.
解析
转载请注明原文地址:https://kaotiyun.com/show/KP04777K
0
考研数学一
相关试题推荐
(2005年)求幂级数的收敛区间与和函数f(x)。
(2017年)设函数f(u,v)具有二阶连续偏导数,y=f(ex,cosx),求
已知微分方程y’+y=f(x),且f(x)是R上的连续函数.(I)当f(x)=x时,求微分方程的通解.(Ⅱ)当f(x)为周期为T的函数,证明:微分方程存在唯一以T为周期的解.
设矩阵其行列式|A|=-1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c和λ0的值。
设a,b为何值时,存在矩阵C,使得AC-CA=B,并求所有矩阵C。
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
设总体X的概率密度为其中参数θ(0<0<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。(Ⅰ)求参数θ的矩估计量;(Ⅱ)判断是否为θ2的无偏估计量,并说明理由。
设直线L:求该旋转曲面界于z=0与z=1之间的几何体的体积.
(2018年)将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
(2018年)过点(1,0,0),(0,1,0),且与曲面z=x2+y2相切的平面为
随机试题
T细胞形成耐受性
A.皮肤瘀点、瘀斑B.大片淤斑伴中央坏死C.充血性皮疹D.皮肤溃疡及焦痂E.疱疹普通型流脑可见
肾移植,术前最后一次血液透析距手术时间不应超过
A、药事管理委员会B、药学部门C、药检室D、质量管理组E、临床药学部门确定医疗机构用药目录和处方手册的是
下列需要向税务机关申报办理税务登记的是()。
在对投资方案进行经济效益评价时,下列五个指标中在经济上可以接受的是()。
企业联盟有若干组织运行模式,适用于快速开发高新技术产品的模式是()。
仅承受自身重量,并把自重传给基础墙为()
A、Everyonehashisownoffice.B、Mostpeoplesharethedesks.C、Mostpeople’sdesksareveryhot.D、Thewomanhasnoprivatespa
新中国成立后,中国政府十分重视发展教育事业。
最新回复
(
0
)