首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是四阶矩阵,A*是A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为( )
设A=(α1,α2,α3,α4)是四阶矩阵,A*是A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为( )
admin
2018-04-08
46
问题
设A=(α
1
,α
2
,α
3
,α
4
)是四阶矩阵,A
*
是A的伴随矩阵,若(1,0,1,0)
T
是方程组Ax=0的一个基础解系,则A
*
x=0的基础解系可为( )
选项
A、α
1
,α
3
B、α
1
,α
2
C、α
1
,α
2
,α
3
D、α
2
,α
3
,α
4
答案
D
解析
由Ax=0的基础解系只包含一个向量可知,r(A)=3,所以r(A
*
)=1,则A
*
x=0的基础解系中有三个线性无关的解。又由A
*
A=|A|E=0可知,α
1
,α
2
,α
3
,α
4
都是A
*
x=0的解,且A
*
x=0的极大线性无关组就是其基础解系。又
=α
1
+α
3
=0,所以α
1
,α
3
线性相关,故α
1
,α
2
,α
4
或α
2
,α
3
,α
4
为极大线性无关组,即基础解系,故应选D。
转载请注明原文地址:https://kaotiyun.com/show/3lr4777K
0
考研数学一
相关试题推荐
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性无关;
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性相关;
设矩阵,矩阵X满足AX+E=A2+X,其中E为3阶单位矩阵.求矩阵X
求方程的通解.
求方程的通解.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
已知3阶矩阵A与3维向量x.使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.(1)记P=(xAxA2x),求3阶矩阵B,使A=PBP—1;(2)计算行列式|A+E|.
随机试题
短期目标是长期目标的过程分解为连续的若干个小步骤,每个小步骤就是一个()
(59~63题共用题干)女性,60岁,患慢性肾炎8年。近日水肿加重,经常恶心、尿少,血压170/97mmHg,血尿素氮23mmol/L,肌酐460mmol/L,肾小球滤过率25m1/min,诊断为慢性肾衰竭尿毒症期。尿毒症营养治疗的基本原则是增加必需氨基酸
WHO龋病流行程度属高的标准是
儿童性早熟的诊断依据不包括
A.降钙素B.多巴胺C.缩宫素D.维生素DE.乙酰胆碱属于32肽的是()
电磁波中,()频段俗称高频辐射。
项目目标可分解为工期目标、成本目标和()。
“剪切”、“复制”、“粘贴”命令的快捷键分别为______、______、______。
Whoisthemanprobablytalkingto?
ThanksgivingDayiscelebratedwithalotof【C1】______andmerry-makinginAmerica.CelebratedonthefourthThursdayinthe
最新回复
(
0
)