首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是四阶矩阵,A*是A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为( )
设A=(α1,α2,α3,α4)是四阶矩阵,A*是A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为( )
admin
2018-04-08
33
问题
设A=(α
1
,α
2
,α
3
,α
4
)是四阶矩阵,A
*
是A的伴随矩阵,若(1,0,1,0)
T
是方程组Ax=0的一个基础解系,则A
*
x=0的基础解系可为( )
选项
A、α
1
,α
3
B、α
1
,α
2
C、α
1
,α
2
,α
3
D、α
2
,α
3
,α
4
答案
D
解析
由Ax=0的基础解系只包含一个向量可知,r(A)=3,所以r(A
*
)=1,则A
*
x=0的基础解系中有三个线性无关的解。又由A
*
A=|A|E=0可知,α
1
,α
2
,α
3
,α
4
都是A
*
x=0的解,且A
*
x=0的极大线性无关组就是其基础解系。又
=α
1
+α
3
=0,所以α
1
,α
3
线性相关,故α
1
,α
2
,α
4
或α
2
,α
3
,α
4
为极大线性无关组,即基础解系,故应选D。
转载请注明原文地址:https://kaotiyun.com/show/3lr4777K
0
考研数学一
相关试题推荐
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关;
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性无关;
已知ξ1,ξ2是方程(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是()
求微分方程的通解.
求方程的通解.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
设以元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
随机试题
Bobath疗法中反射性抑制伸展姿势主要采用
充填后牙体折裂的原因,除外
防己的功效是
急性腹泻病程正确的是
按经费来源分,该年度我国企业部分的“科学研究与试验发展经费支出”约比政府部分()。
物业管理机构更迭时查验物业共用部位、共用设施设备及管理现状的主要项目内容有()。
下列费用中,不应列入出版单位营业费用项目的是()。
根据一定标准和原则划分的同类法律规范的总和,被称为()。
将考生文件夹下RAS\GGG文件夹中的文件MENTS.DOC设置成只读属性。
(1)Joyandsadnessareexperiencedbypeopleinallculturesaroundtheworld,buthowcanwetellwhenotherpeoplearehappyo
最新回复
(
0
)