首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是四阶矩阵,A*是A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为( )
设A=(α1,α2,α3,α4)是四阶矩阵,A*是A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为( )
admin
2018-04-08
37
问题
设A=(α
1
,α
2
,α
3
,α
4
)是四阶矩阵,A
*
是A的伴随矩阵,若(1,0,1,0)
T
是方程组Ax=0的一个基础解系,则A
*
x=0的基础解系可为( )
选项
A、α
1
,α
3
B、α
1
,α
2
C、α
1
,α
2
,α
3
D、α
2
,α
3
,α
4
答案
D
解析
由Ax=0的基础解系只包含一个向量可知,r(A)=3,所以r(A
*
)=1,则A
*
x=0的基础解系中有三个线性无关的解。又由A
*
A=|A|E=0可知,α
1
,α
2
,α
3
,α
4
都是A
*
x=0的解,且A
*
x=0的极大线性无关组就是其基础解系。又
=α
1
+α
3
=0,所以α
1
,α
3
线性相关,故α
1
,α
2
,α
4
或α
2
,α
3
,α
4
为极大线性无关组,即基础解系,故应选D。
转载请注明原文地址:https://kaotiyun.com/show/3lr4777K
0
考研数学一
相关试题推荐
设随机向量(X,Y)的概率密度f(x,y)满足f(x,y)一f(-x,y),且ρXY存在,则ρXY=()
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
已知二次型f(x1,x2,x3)=2x12+x22+x32+2tx1x2+tx2x3是正定的,则t的取值范围是____________.
设矩阵,矩阵X满足AX+E=A2+X,其中E为3阶单位矩阵.求矩阵X
利用变换y=f(ex)求微分方程y’’一(2ex+1)y’+e2xy=e3x的通解.
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
计算下列n阶行列式:
设以元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
随机试题
患者,27岁,男性,3天前因汗出受风,诱发头身酸痛、恶寒、发热、咽痛;旋即出现颜面及双下肢水肿,自服“解热镇痛药”热退肿不消。刻下症:颜面及双下肢水肿,尿少色黄赤,腰痛,周身不舒,咽喉红肿疼痛,舌暗红,苔薄黄,脉滑数而见浮象。辨证为
下列选项中,适用于烧伤面铜绿假单胞菌感染的药物是
A、下肢外侧后缘B、上肢内侧中线C、下肢外侧前缘D、上肢外侧中线E、上肢内侧后缘患者病发心绞痛,沿手少阴经放散,其病变部位在
A.黑色大便B.口干和视力模糊C.便秘D.幻觉、定向力障碍E.疲乏、嗜睡
地震区钢框架结构中,不宜采用下列哪种钢材?
下列不属于暗挖车站工法选择原则的是()。
教育不是为了教会青年人如何谋生,而是教会他们如何创造生活。
Thetranslatormusthaveanexcellent,up-to-dateknowledgeofhis【B1】______languages,flailfacilityinthehandlingofhist
下列叙说中正确的是______。
Whichnumbershouldreplacethequestionmark?
最新回复
(
0
)