首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A,B乘积可交换,ξ1,…,ξr1和η1,…,ηr2分别是方程组Ax=0与Bx=0的一个基础解系,且对于n阶矩阵C,D,满足r(CA+DB)=n.证明: r且ξ1,…,ξr1,η1,…,ηr2线性无关;
设n阶矩阵A,B乘积可交换,ξ1,…,ξr1和η1,…,ηr2分别是方程组Ax=0与Bx=0的一个基础解系,且对于n阶矩阵C,D,满足r(CA+DB)=n.证明: r且ξ1,…,ξr1,η1,…,ηr2线性无关;
admin
2021-07-27
48
问题
设n阶矩阵A,B乘积可交换,ξ
1
,…,ξ
r1
和η
1
,…,η
r2
分别是方程组Ax=0与Bx=0的一个基础解系,且对于n阶矩阵C,D,满足r(CA+DB)=n.证明:
r
且ξ
1
,…,ξ
r1
,η
1
,…,η
r2
线性无关;
选项
答案
因为n=r(CA+DB)=[*]Ax=0与Bx=0无非零公共解,又ξ
1
,…,ξ
r1
,和η
1
,…,η
r1
分别为Ax=0与Bx=0的基础解系,于是ξ
1
,…,ξ
r1
,η
1
,…,η
r1
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/KTy4777K
0
考研数学二
相关试题推荐
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2一α4,α3+α4,α2+α3,2α1+α2+α3的秩是()
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明:(1)存在ξ∈(0,1),使得f′(ξ)=1;(2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
设A为三阶矩阵,且Aαi=iαi(i=1,2,3),其中α1=(1,2,3)T,α2=(0,1,2)T,α3=(0,0,1)T,求A。
求y〞-2y′-e2χ=0满足初始条件y(0)=1,y′(0)=1的特解.
已知n阶方阵A满足矩阵方程A2-3A-2E=0,其中A给定,而E是单位矩阵,证明A可逆,并求出其逆矩阵A-1.
线性方程组则()
微分方程y"+2y’+2y=e一xsinx的特解形式为()
微分方程y’’+y=x2+1+sinx的特解形式可设为()
把二重积分f(χ,y)出dχdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线χ+y=1,χ=1,y=1围成.
随机试题
孙玉系海成县刘家镇人,1997年7月因故意伤害罪被取保候审,孙玉在取保候审期间的哪些行为违反了刑事诉讼法关于被取保候审人应遵守的规定?
在我国,因产品存在缺陷造成损害要求赔偿的诉讼时效期间是()
在女性上生殖道感染的防御机制中,最重要的是()
常用的冷刺激源不包括
我国现行《宪法》规定,下列中央国家机关中连续任职不得超过两届的有哪些?()
在面对侵害客户或者期货公司合法权益的指令时,首席风险官()。
嫉妒情绪的特点包括()。
请认真阅读下列材料,并按要求作答。问题:如指导小学生学习,试拟定教学目标。
由清乾隆年间的梆子腔演员魏长生创造出来的戏曲表演基本功是()。[2011年真题]
InAmerica,olderpeoplerarelylivewiththeiradultchildren.Butinmanyothercultureschildrenareexpectedtocare【C1】____
最新回复
(
0
)