首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设γ1,γ2,…,γt和η1,η2,…,ηs分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是y1,γ2,…,γt,η1,η2,…,ηs线性相关.
设γ1,γ2,…,γt和η1,η2,…,ηs分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是y1,γ2,…,γt,η1,η2,…,ηs线性相关.
admin
2019-01-05
56
问题
设γ
1
,γ
2
,…,γ
t
和η
1
,η
2
,…,η
s
分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是y
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
选项
答案
[*] 由γ
1
,γ
2
,…,γ
r
,η
1
,η
2
,…,η
r
线性相关,知存在k
1
,k
2
,…,k
r
,l
1
,l
2
,…,l
r
不全为零,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0.令ξ=k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
,则ξ≠0(否则k
1
,k
2
,…,k
1
,l
1
,l
2
,…,l
s
全为0),且ξ=一l
1
η
1
,l
2
η
2
,…,l
s
η
s
,即一个非零向量ξ既可由γ
1
,γ
2
,…,γ
t
表示,也可由η
1
,η
2
,…,η
s
表示,所以A Ax=0和Bx=0有非零公共解. [*] 若Ax=0和Bx=0有非零公共解,假设为ξ≠0,则ξ=k
1
y1+k
2
γ
2
+…+k
t
γ
t
,且ξ=一l
1
η
1
—l
2
η
2
一l
s
η
s
,于是,存在k
1
,k
2
,…,k
t
不全为零,存在l
1
,l
2
,…,l
s
不全为零,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
…+l
s
η
s
=0.从而γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/KZW4777K
0
考研数学三
相关试题推荐
设f(x)二阶连续可导,g(x)连续,且,则().
设随机变量X的概率密度为对X作两次独立观察,设两次的观察值为X1,X2,令求常数a及P{X1<0,X2>1);
设f(x)在任意点x0∈(一2,+∞)有定义,且f(一1)=1,a为常数,若对任意x,x0∈(一2,+∞)满足则函数f(x)在(一2,+∞)内
设则A-1=____________.
(00年)求微分方程y〞-2y′-e2χ=0满足条件y(0)=1,y′(0)=1的解.
(10年)设已知线性方程组Aχ=b存在2个不同的解.(Ⅰ)求λ,a;(Ⅱ)求方程组Aχ=b的通解.
(14年)设p(χ)=a+bχ+cχ2+dχ3.当χ→0时,若p(χ)-tanχ是比χ3高阶的无穷小,则下列结论中错误的是【】
设f(x)在(一∞,+∞)内连续,以T为周期,令F(x)=∫0xf(t)dt.求证:(1)F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数.(2)∫0Tf(x)dx.
设f(x)=,则当x→0时,g(x)是f(x)的().
下列说法正确的是().
随机试题
万华机械厂2005年年末有关财务资料如下:货币资金5000万元,固定资产125007万元,销售收入32000万元,净利润4288万元,利息支出1475万元,速动比率为1.8,流动比率为2,应收账款周转天数为45天。假如该企业速动资产只包括货币资金
新生仔猪低血糖症的最合适的治疗措施是
只能生酮的氨基酸是
在酒店装饰装修工程网络计划中,已知工作F总时差和自由时差分别为6d和4d,但在对实际进度进行检查时,发现该工作的持续时间延长了5d,则此时工作F的实际进度对其紧后工作最早开始时间和总工期的影响()。
能源库存的核算原则是()。该炼油厂2008年年末的燃料油库存量为()万吨。
根据《公司法》的规定,股份有限公司的设立,必须经过国务院授权的部门或省级人民政府批准。()
资产安全性监管是监管当局对银行机构监管的重要内容,资产安全性监管的重点应该是( )。处置倒闭银行的措施主要有( )。
经济订货基本模型的假设不包括的是()。
促进学生自主学习和终身锻炼的前提是________和________。
王勃《滕王阁序》开篇“豫章故郡,洪都新府”所述地点是指今()。
最新回复
(
0
)