首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证一 由定积分的估值定理证之. 因g(x)在[a,b]上连续,则在[a,b]上必可积,且0≤g(x)≤1,由估值定理知,当x∈[a,b)]时,必有[*]即[*] 证二 由比较定理证之.因0≤g(x)≤1,则[*]即
证一 由定积分的估值定理证之. 因g(x)在[a,b]上连续,则在[a,b]上必可积,且0≤g(x)≤1,由估值定理知,当x∈[a,b)]时,必有[*]即[*] 证二 由比较定理证之.因0≤g(x)≤1,则[*]即
admin
2019-03-30
54
问题
选项
答案
证一 由定积分的估值定理证之. 因g(x)在[a,b]上连续,则在[a,b]上必可积,且0≤g(x)≤1,由估值定理知,当x∈[a,b)]时,必有[*]即[*] 证二 由比较定理证之.因0≤g(x)≤1,则[*]即 [*] 证三 由积分中值定理证之.由该定理得到[*]ξ∈[a,x].因当x∈[a,b]时,有0≤g(x)≤1,故0≤g(ξ)≤1,从而 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/KaP4777K
0
考研数学三
相关试题推荐
设A为正交矩阵,且|A|=一1,证明:λ=一1是A的特征值。
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|又f(1)=0,证明:|∫01f(x)dx|≤ln2.
设二次型f(x1,x2,x3)=XTAX,tr(A)=1,又B=且AB=O.(1)求正交矩阵Q,使得在正交变换X=QY下二次型化为标准形.(2)求矩阵A.
求幂级数(2n+1)xn的收敛域及和函数.
设曲线y=a+x-x3,其中a<0.当x>0时,该曲线在x轴下方与y轴、x轴所围成图形的面积和在x轴上方与x轴所围成图形的面积相等,求a.
求微分方程xy’’+3y’=0的通解.
设总体X服从参数为p的几何分布,如果取得样本观测值为x1,x2,…,xn,求参数p的矩估计值与最大似然估计值。
(2014年)设,且a≠0,则当n充分大时有()
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是().
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为()
随机试题
袁枚在诗歌创作上主张【】
对作案多起的刑事案犯,所采用的手段、作案的具体情节、造成的后果基本相同,而案犯又供认不讳、各方均无异议的案件,一般采用的文书行文章法是
患儿,10个月。腹泻3天,鼻塞流涕,每日大便10余次,呈稀水样,臭味不甚,尿黄。查体:体温38℃,皮肤弹性尚好,前囟平,哭时有泪。听诊心肺正常,肠鸣音亢进,舌苔薄白,指纹红,达于风关。大便镜检无异常。应首先考虑的是
A.灰黄霉素B.两性霉素BC.制霉菌素D.克霉唑E.酮康唑外用无效,口服治疗体表癣病的药物是
背景某安装公司承包一水处理厂的设备安装工程,安装公司负责设备的采购、施工(PC合同),合同工期为365天(2013年1月1日~2013年12月31日)。合同签订后,因建设单位在征地环节上出了问题,施工场地延后3个月才交付给安装公司,所以建设单位将
对外贸易系数
下列关于公司首次公开发行新股,说法正确的有()。
【2015工商银行】第一个事实:电视广告的效果越来越差,一项跟踪调查显示,在电视广告所推出的各种商品中,观众能够记住其品牌名称的商品的百分比逐年降低。第二个事实:在一段连续插播的电视广告中,观众印象较深的是第一个和最后一个,而中间播出的广告留给观众的印象
VBA中运算符“&”的含义是()。
HowlongdidEmilyDickinsonliveinthehousewhereshewasborn?
最新回复
(
0
)