首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=0,其中 (1)求正交变换X=Qy将二次型化为标准形; (2)求矩阵A.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=0,其中 (1)求正交变换X=Qy将二次型化为标准形; (2)求矩阵A.
admin
2021-11-15
44
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX,A的主对角线上元素之和为3,又AB+B=0,其中
(1)求正交变换X=Qy将二次型化为标准形;
(2)求矩阵A.
选项
答案
(1)由AB+B=0得(E+A)B=0,从而r(E+A)+r(B)≤3, 因为r(B)=2,所以r(E+A)≤1,从而λ=-1为A的特征值且不低于2重, 显然λ=-1不可能为三重特征值,则A的特征值为λ
1
=λ
2
=-1,λ
3
=5. 由(E+A)B=0得B的列组为(E+A)X=0的解, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ely4777K
0
考研数学二
相关试题推荐
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于().
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解。
设A为三阶正交阵,且|A|<0,|B-A|=-4,则|E-ABT|=________.
设A为4阶矩阵,A=(α1,α2,α3,α4),若Ax=0的基础解系为(1,2,﹣3,0)T,则下列说法中错误的是()
设二次型f(χ1,χ2,χ3)=χTAχ=3χ12+aχ22+3χ33-4χ1χ2-8χ1χ3-4χ2χ3,其中-2是二次型矩阵A的一个特征值.(Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换;(Ⅱ)如果A*+kE是正定矩阵,
关于二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
二次型f(x1,x2,x3)=x12+4x22+4x32一4x1x2+4x1x3—8x2x3的规范形为()
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
随机试题
细菌的繁殖方式是________,病毒的繁殖方式是________。
关于双代号时标网络计划与横道计划特点的说法,正确的有()。
首选HMG-COA还原酶抑制药的疾病有
下列各项,构成企业留存收益的有()。
下列选项中,有关北京的历史说法正确的是()。
所谓客观真理,主要是指()。
罗马“3世纪危机”的根本原因是()。
(2012年真题)根据物权法规定,下列由建筑物区分所有权的业主共同决定的事项中,应当经专有部分占建筑物面积三分之二以上的业主且占总人数三分之二以上的业主同意的有()。
Thepairofwords"lend"and"borrow"are
Thereareonlytwowaystogatherinformationfromhumansubjectsaboutwhattheyarecurrentlydoing,thinking,orfeeling.On
最新回复
(
0
)