首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( ).
[2005年] 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( ).
admin
2019-05-10
82
问题
[2005年] 设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为α
1
,α
2
,则α
1
,A(α
1
+α
2
)线性无关的充分必要条件是( ).
选项
A、λ
1
≠0
B、λ
2
≠0
C、λ
1
=0
D、λ
2
=0
答案
B
解析
所给向量为抽象向量组,其线性相关性常采用定义证明.因α
1
,α
2
线性无关,也可采用矩阵表示法证之(见命题2.3.2.2).
因Aα
1
=λ
1
α
1
,Aα
2
=λ
1
α
2
,A(α
1
+α
2
)=λ
1
α
1
+λ
2
α
2
,故
由命题2.3.2.2知α
1
,A(α
1
+α
2
)线性无关的充要条件为
=λ
2
≠0.仅(B)入选.
解二 仅(B)入选.由题设有Aα
1
=λ
1
α
1
,Aα
2
=λ
2
α
2
.设k
1
α
1
+k
2
A(α
1
+α
2
)=0.由k
1
α
1
+k
2
A(α
1
+α
2
)=(k
1
+λ
1
k
2
)α
1
+λ
2
k
2
α
2
=0及α
1
,α
2
线性无关得到齐次方程组
由α
1
,A(α
1
+α
2
)线性无关
k
1
=k
2
=0
方程组①只有零解
=λ
2
≠0.
转载请注明原文地址:https://kaotiyun.com/show/KjV4777K
0
考研数学二
相关试题推荐
用变量代换χ=lnt将方程+e2χy=0化为y关于t的方程,并求原方程的通解.
若f(-χ)=-f(χ),且在(0,+∞)内f′(χ)>0,f〞(χ)>0,则在(-∞,0)内().
考虑二次型f=χ12+4χ22+4χ32+2λχ1χ2-2χ1χ3+4χ2χ3,问λ取何值时,f为正定二次型?
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
f(χ)在[-1,1]上连续,则χ=0是函数g(χ)=的().
设二次型f=2χ12+2χ22+aχ32+2χ1χ2+2bχ1χ3+2χ2χ3经过正交变换X=QY化为标准形f=y12y22+4y32,求参数a,b及正交矩阵Q.
设二次型f(χ1,χ2,χ3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中B=(1)求正交变换X=QY将二次型化为标准形;(2)求矩阵A.
求函数f(χ)==(2-t)e-tdt的最大值与最小值.
曲线y=x2+x(x<0)上曲率为的点的坐标是_________.
设有方程y’+P(x)y=x2,其中试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
随机试题
对分类汇总的数据要事先进行_________。
下列有关会阴部手术病人的护理内容,正确的是
以下哪项不是人工流产术后并发症
缺铁性贫血的血象特点为
外阴鳞状上皮增生局部治疗的主要药物是()
断口呈贝壳状,暗红色,具树脂样光泽的药材为
有关药品包装材料叙述错误的是
重复性试验中所指的重复性条件包括()。
项目的效果和效益评价分为五个方面,下列包括在内的是()。
内容和形式是揭示事物内在要素和这些要素的结构、表现方式之间关系的范畴。内容是构成事物的一切要素的总和,是事物存在的基础;形式是内容诸要素相互结合的结构和表现方式。以下属于内容与形式关系的有()
最新回复
(
0
)