首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 有基础解系β1=[b11,b12,b13,b14]T,β2=[b21,b22,b23,b24]T,记α1=[a11,a12,a13,
设齐次线性方程组 有基础解系β1=[b11,b12,b13,b14]T,β2=[b21,b22,b23,b24]T,记α1=[a11,a12,a13,
admin
2019-02-26
61
问题
设齐次线性方程组
有基础解系β
1
=[b
11
,b
12
,b
13
,b
14
]
T
,β
2
=[b
21
,b
22
,b
23
,b
24
]
T
,记α
1
=[a
11
,a
12
,a
13
,
选项
答案
由题设条件:β
1
,β
2
线性无关,r(α
1
,α
2
)=2,α
1
,α
2
线性无关,且β
1
,β
2
是方程组的解,满足 α
i
T
β
j
=0(i=1,2,j=1,2). (*) 用线性无关定义证. 设有数k
1
,k
2
,k
3
,k
4
,使得k
1
α
1
+k
2
α
2
+k
3
β
1
+k
4
β
2
=0, (**) 两端左边乘α
i
T
(i=1,2),且利用(*)式得 [*] (***)式看作以数k
1
,数k
2
为未知数的方程组,则系数矩阵为 [*] =[α
1
,α
2
]
T
[α
1
,α
2
]. 由r(A)=r(A
T
A)及α
1
,α
2
线性无关,有 [*] 方程组(***)只有零解,从而得k
1
=k
2
=0. 将k
1
,k
2
代入(**)式,因β
1
,β
2
线性无关,得k
3
=k
4
=0,从而得证α
1
,α
2
,β
1
,β
2
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Km04777K
0
考研数学一
相关试题推荐
设总体X服从正态分布N(0,σ2),,S2分别为容量是n的样本的均值和方差,则可以作出服从自由度为n-1的t分布的随机变量()
设P(χ),q(χ),f(χ)均是关于χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的3个线性无关的解,C1与C2是两个任意常数,则该非齐次线性微分方程的通解为()
设二次型f(χ1,χ2,χ3)=aχ12+2χ22+2χ32+2b1χ3(b>0),其中二次型的矩阵A的特征值的和为1,特征值的乘积为-12。(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型化为标准形,并写出所作的正交变换和对应的正交矩阵
线性方程组有公共的非零解,求a,b的值和全部公共解。
设函数z=z(χ,y)具有二阶连续的偏导数,满足=χ+y,z(χ,0)=0,z(0,y)=y2,则z(χ,y)=_______。
在微分方程χ=2y-χ的一切解中求一个解y=y(χ),使得曲线y=y(χ)与直线χ=1,χ=2及y=0所围成的平面图形绕y=0旋转一周的旋转体体积最小。
设y=ec,y=x2为某二阶线性齐次微分方程的两个特解,则该微分方程为______
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为________.
设η为非零向量,A=,η为方程组AX=0的解,则A=________,方程组的通解为________.
计算曲面积分2(1-xy)dydz+(x+1)ydzdx-4yz2dxdy,其中∑是弧段(1≤x≤3)绕x轴旋转一周所得的旋转曲面,∑上任一点的法向量与x轴正向夹角大于
随机试题
适宜用银翘散治疗的病证是
重量分析法中,一般同粒子效应将使沉淀溶解度增大。()
6个月以内婴儿无热性支气管肺炎应考虑
在实施阶段,质量目标计划值和实际值的比较不包括()。
()的化妆品不可以合并提出化妆品标签审核申请。
以下关于太阳的说法不正确的是()。
“人多力量大”、“众人拾柴火焰高”,这些名言证明了人口的增加是有利于社会发展的。上述推断的主要缺陷在于:
下列关于法定之债与意定之债的说法不正确的是()
•Youwillhearhowtogetreadyfortheannualdinneranddance.•Asyoulisten,forquestions1-12,completethenotes.using
A、Sheisapplyingforajob.B、Shewantstochangeherjob.C、Sheisinterviewinganapplicant.D、Sherefusestoworkforhim.C
最新回复
(
0
)