首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (1)求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)求A的特征值. (3)求作可逆矩阵P,使
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (1)求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)求A的特征值. (3)求作可逆矩阵P,使
admin
2019-05-11
38
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(1)求作矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B.
(2)求A的特征值.
(3)求作可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(1)在第二章中,已经用矩阵分解求出 [*] (2)由于α
1
,α
2
,α
3
线性无关,(α
1
,α
2
,α
3
)是可逆矩阵,并且(α
1
,α
2
,α
3
)
-1
A(α
1
,α
2
,α
3
)=B,因此A和B相似,特征值相同. [*] B的特征值为1,1,4.A的特征值也为1,1,4 (3)先把B对角化.求出B的属于1的两个线性无关的特征向量(1,-1,0)
T
,(0,2,-1)
T
;求出B的属于4的一个特征向量(0,1,1)
T
.构造矩阵 [*] 令P=(α
1
,α
2
,α
3
)D=(α
1
-α
2
,2α
2
-α
3
,α
2
+α
3
),则 P
-1
AP=D
-1
(α
1
,α
2
,α
3
)
-1
A(α
1
,α
2
,α
3
)D=D
-1
BD=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/KyV4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f′(ξ)=2∫01f(χ)dχ.
设A,B都是三阶矩阵,A相似于B,且|E-A|=|E-2A|=|E-3A|=0,则|B-1+2E|=_______.
设n阶矩阵A=,则|A|=_______.
设n阶矩阵A满足A2+2A-3E=O.求:(1)(A+2E)-1;(2)(A+4E)-1.
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P-1AP为对角阵.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足_______.
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足=-z,若f(x,y)在D内没有零点,则f(x,y)在D上().
求极限
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;
(87年)求∫01xarcsinxdx.
随机试题
下列情形,能够引起物权变动的是()。
已知某电焊机变压器的匝数比n=5,其次级电流I2=60A。试求初级电流。
腰椎间盘突出的典型X线平片表现有
A、发汗解表,利水退肿B、泻水逐饮,消肿散结C、祛风散寒,胜湿止痛,发表D、杀虫E、清热凉血,活血化瘀槟榔与南瓜子的功效相同点是
以下关于钻眼作业的规定中,正确的是()。
通过压缩关键工作的持续时间来缩短工期,从而调整施工进度计划,通常采取()来达到目的。
套利分析的常用方法包括( )。
下列不属于中国人民银行职能的是()。
某学术期刊一篇文章后的参考文献表中列有:“[8]白书农.植物开花研究[M]//李承森.植物科学进展.北京:高等教育出版社,1998:146-163.”据此可知()。
圆珠笔(签字笔、中性笔)是我们很熟悉的书写工具。在设计制造时,笔芯内的油墨量与金属笔嘴的寿命存在科学的对应关系,且笔芯上端通常都留有一小孔。关于这些设计的说法不正确的是:
最新回复
(
0
)