首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )
admin
2019-08-12
49
问题
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )
选项
A、若Ax=0仅有零解,则Ax=b有唯一解。
B、若Ax=0有非零解,则Ax=b有无穷多个解。
C、若Ax=b有无穷多个解,则Ax=0仅有零解。
D、若Ax=b有无穷多个解,则Ax=0有非零解。
答案
D
解析
因为不论齐次线性方程组Ax=0的解的情况如何,即r(A)=n或r(A)<n,以此均不能推得r(A)=r(A;b),所以选项A、B均不正确。而由Ax=b有无穷多个解可知,r(A)=r(A;b)<n。根据齐次线性方程组有非零解的充分必要条件可知,此时Ax=0必有非零解。所以应选D。
转载请注明原文地址:https://kaotiyun.com/show/L5N4777K
0
考研数学二
相关试题推荐
求.要求写出详细的推导过程.
(05年)如图.曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3.2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx.
(05年)如图,C1和C2分别是y=(1+ex)和y=ex的图像,过点(0,1)的曲线C3是一单调增函数的图像,过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly.记C1,C2与lx所围图形的面积为S1(x);C2,C3与ly所围图形的面积为
(10年)设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=证明:存在使得f’(ξ)+f’(η)=ξ2+η2.
(93年)设二阶常系数线性微分方程y”+αy’+βy=γex的一个特解为y=e2x+(1+x)ex,试确定常数α、β、γ,并求该方程的通解.
(10年)设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则
(05年)计算二重积分|x2+y2一1|dσ,其中D={(x,y)|0≤x≤1,0≤y≤1}.
(2018年)设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则
设4阶方阵A=[α,γ2,γ3,γ4],B=[β,γ2,γ3,γ4],其中α,β,γ2,γ3,γ4都是4维列向量,且|A|=4,|B|=1,则|A+B|=_______.
设一质点在单位时间内由点A从静止开始做直线运动至点B停止,A,B两点间距离为1,证明:该质点在(0,1)内总有一时刻的加速度的绝对值不小于4.
随机试题
联合国驻联合国会员国甲国的某机构于2010年以联合国的名义,与甲国政府签订协议,购买了一批设备。后双方产生纠纷。依有关国际法规则,下列哪个选项是正确的?()
交易者以75200元/吨卖出2手铜期货合约,并欲将最大亏损限制为100元/吨,因此下达止损指令时设定的价格应为()元/吨。(不计手续费等费用)
设立基金管理公司,主要股东的注册资本最低是()。
《林黛玉进贾府》一文课后提供了“《红楼梦》贾府主要人物关系表”,下列对编者设置这一关系表的意图理解最恰当的是()。
在飘来飘去的朋友圈谣言面前,我们需要对传统的治理模式进行反思。一个更公开的、更亲民的政府,一个更克制的、更有限的市场,一个更平和的、更理想的社会,都是文明开放的舆论生态场不可或缺的。坦率而言,无论在哪一个方面,距离这个状态都还有很长的路要走,而在当下,也许
某工厂生产一批零件,计划10天完成任务,实际提前2天完成,则每天的产量比计划平均提高了().
现代微型计算机中所采用的电子器件是______。A)电子管B)品体管C)中小规模集成电路D)大规模集成和超大规模集成电路
Howdoesthemanfeelaboutthemovie?
Climatechangewillgreatly______wheatandriceproductionifnationsdon’ttakestepsnow.
Westernerstendtopaymoreattentiontothecentralobjectwhenlookingatapainting.Nisbett’sresearchshowsthatAmericans
最新回复
(
0
)