首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)设α1,α2,α3均为3维列向量,记矩阵 A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=_______.
(2005年)设α1,α2,α3均为3维列向量,记矩阵 A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=_______.
admin
2018-07-30
56
问题
(2005年)设α
1
,α
2
,α
3
均为3维列向量,记矩阵
A=(α
1
,α
2
,α
3
),B=(α
1
+α
2
+α
3
,α
1
+2α
2
+4α
3
,α
1
+3α
2
+9α
3
).如果|A|=1,那么|B|=_______.
选项
答案
2
解析
解1利用矩阵乘法,可将B表示为
B=(α
1
,α
2
,α
3
)
(*)
两端取行列式,得
|B|=|A|
=1×2=2.
解2对行列式|B|依次作等值变形(用c
i
+kc
j
表示第i列加上第j列的志倍)c
2
-c
1
,c
3
-c
1
,得
|B|=|α
1
+α
2
+α
3
,α
2
+3α
3
,2α
2
+8α
3
|
再作等值变形c
3
-2c
2
,得
|B|=|α
1
+α
2
+α
3
,α
2
+3α
3
.2α
3
|=2|α
1
+α
2
+α
3
,α
2
+3α
3
,α
3
|=2|α
1
+α
2
,α
2
,α
3
|=2|α
1
,α
2
,α
3
|=2|A|=2.
转载请注明原文地址:https://kaotiyun.com/show/Q9j4777K
0
考研数学二
相关试题推荐
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是p1=18—2Q1,p2=12-Q2,其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨),并且该企业生产这
曲线y=的渐近线条数为().
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,(x)>0,(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设的特征向量,则a=_______,b=_______.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2a1+α2-α3,α2+α3线性相关,则a=_______
随机试题
男性患者,54岁,上腹部不适10余年,诊断为胃溃疡。1年来,消瘦,粪隐血检查2+。在查体时最可能发现的是
肾综合征出血热早期休克的原因是
施工过程中因承包人原因导致工程实际进度滞后于计划进度,承包人按工程师要求采取赶工措施后仍未按合同规定的工期完成施工任务,则此延误的责任应由( )承担。
A上市公司于2013年5月向中国证监会提出增发股票的申请,根据《发行管理办法》的规定,下列各项中,不符合上市公司增发股票条件的有()。Ⅰ.2010年10月现任公司董事甲因违规行为受到中国证监会的行政处罚Ⅱ.2011年8月曾公开
乙公司属于工业企业,为增值税一般纳税人,适用17%的增值税税率,售价中不含增值税。商品销售时,同时结转成本。本年利润采用表结法结转。2013年11月30日损益类有关科目的余额如下表所示:2013年12月份乙公司发生如下经济业务:(1)销
下列关于政府补助的说法中正确的有()。
以下说法正确的是()。
2018年我国科技界取得了一系列重大成果,这些成果中不包括:
和资本资产定价模型相比,套利定价模型并没有指出决定资产风险溢价的因素是哪些。我们该如何决定应该包含哪些因素?公司规模可以是套利定价模型中的一个重要因素吗?
CanyouimaginelifewithoutFrenchfries(炸薯条)?Potatoesareverypopulartoday.Butinthepastthiswasnottrue.Potatoesgre
最新回复
(
0
)