首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f’(η)=2∫01f(x)dx.
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f’(η)=2∫01f(x)dx.
admin
2016-12-16
78
问题
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f’(η)=2∫
0
1
f(x)dx.
选项
答案
因为f’(x)在[0,1]上连续,所以函数f’(x)在[0,1]上有最值, 设其最大值与最小值分别为M和m,即有 m≤f’(x)≤M,x∈[0,1]. 又由拉格朗日中值定理有 f(x)=f(x)一f(0)=xf’(ξ), 则 2∫
0
1
f(x)dx=2∫
0
1
xf’(ξ)dx, ① 因m≤f’(ξ)≤M,故 a≤xf’(ξ)≤xM(因z>0), 所以 2mx≤2xf’(ξ)≤2xM, 因而 2m∫
0
1
xdx≤2∫
0
1
xf’(ξ)dx≤2M∫
0
1
xdx, 即 m≤2∫
0
1
xf’(ξ)dx≤M, 由式①得到 m≤2∫
0
1
f(x)dx≤M. 对f’(x)使用介值定理,得到至少存在一点η∈[0,1],使 f’(η)=2∫
0
1
f(x) dx.
解析
因f’(x)在[0,1]上连续,如能证明2∫
0
1
f(x)如在函数f’(x)的最大值与最小值之间,对f’(x)在[0,1]上使用介值定理,问题得证.为要产生导数f’(η),注意到f(0)=0,可先使用拉格朗日中值定理.
转载请注明原文地址:https://kaotiyun.com/show/L6H4777K
0
考研数学三
相关试题推荐
求二元函数u=x2-xy+y2在点(1,1)沿方向的方向导数及梯度,并指出u在该点沿哪个方向减少的最快?沿哪个方向u的值不变化?
求下列函数的一阶偏导数:
设函数在(-∞,+∞)内连续,则c=_________.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x
曲线y=xe1/x2
设总体X的概率密度为其中λ>0为未知参数,a>0是已知常数,试根据来自总体X的简单随机样本X1,X1…,X,求λ的最大似然估计量.
已知二次型f(x1,x2,x3)=x12+ax22+x32+2x1x2-2ax1x3-2x2x3的正、负惯性指数都是1,则a=_________.
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的最大似然估计量.
一阶常系数差分方程yt+1一4t=16(t+1)4t满足初值y0=3的特解是yt=___________.
随机试题
WhenNeilArmstrongandBuzzAldrinreturnedfromthemoon,theircargoincludednearlyfiftypoundsofrockandsoil,whichwer
被认为是继柏拉图《理想国》之后西方最完整、最系统的教育论著是()
为避免混杂因素影响调查结果,在不同年龄人群调查中,往往采取以下抽样调查方法中的哪一种
A.分离性感觉障碍B.振动觉,位置觉障碍,感觉性共济失调C.病变对侧肢体上运动神经元瘫D.支配肌肉瘫痪,萎缩,肌张力减低E.血管舒缩功能障碍,泌汗障碍
当供应商之间的竞争不充分时,可以通过()的办法降低采购总成本。
一般产品浴盆曲线的三个阶段包括()。
海南杂忆茅盾我们到了那有名的“天涯海角”。原以为这个地方是一条陆地,突入海中,碧涛澎湃,前无去路。但是错了,完全不是那么一回事。所谓“天涯海角”就在公路旁边,相去二三
设二维随机变量(X,Y)的联合密度函数为f(x,y)=求随机变量X,Y的边缘密度函数;
Working-classfamiliesintheUnitedStatesareusuallynuclear,andmanystudiesindicatethatworking-classcouplesmarryfor
Technologyisanothergreatforceforchange.Inpart,technologyhascausedthepopulationexplosion;manyofuswon’tnowbea
最新回复
(
0
)