首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f’(η)=2∫01f(x)dx.
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f’(η)=2∫01f(x)dx.
admin
2016-12-16
47
问题
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f’(η)=2∫
0
1
f(x)dx.
选项
答案
因为f’(x)在[0,1]上连续,所以函数f’(x)在[0,1]上有最值, 设其最大值与最小值分别为M和m,即有 m≤f’(x)≤M,x∈[0,1]. 又由拉格朗日中值定理有 f(x)=f(x)一f(0)=xf’(ξ), 则 2∫
0
1
f(x)dx=2∫
0
1
xf’(ξ)dx, ① 因m≤f’(ξ)≤M,故 a≤xf’(ξ)≤xM(因z>0), 所以 2mx≤2xf’(ξ)≤2xM, 因而 2m∫
0
1
xdx≤2∫
0
1
xf’(ξ)dx≤2M∫
0
1
xdx, 即 m≤2∫
0
1
xf’(ξ)dx≤M, 由式①得到 m≤2∫
0
1
f(x)dx≤M. 对f’(x)使用介值定理,得到至少存在一点η∈[0,1],使 f’(η)=2∫
0
1
f(x) dx.
解析
因f’(x)在[0,1]上连续,如能证明2∫
0
1
f(x)如在函数f’(x)的最大值与最小值之间,对f’(x)在[0,1]上使用介值定理,问题得证.为要产生导数f’(η),注意到f(0)=0,可先使用拉格朗日中值定理.
转载请注明原文地址:https://kaotiyun.com/show/L6H4777K
0
考研数学三
相关试题推荐
设有曲面积分,其中∑为将原点包围在其内部的光滑闭曲面,n=(cosα,cosβ,cosγ)为∑上的动点M处的外法向量,r=|OM|.(1)如果∑1与∑2为满足上述条件的两张曲面,∑1位于∑2的内部,并记在∑1和∑2上的上述积分值分别为I1和I2,证明I1
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3),使f’(ξ)=0.
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
设随机变量X和Y,相互独立,且均服从参数为1的指数分布,V=min(X,Y),U=max(X,Y)求(1)随机变量V的概率密度fv(v);(2)E(U+V).
设幂级数anxn的收敛半径为3,则幂级数nan(x-1)n+1的收敛区间是
设四元线性齐次方程组(1)为x1+x2=0x2-x4=0又已知某线性齐次方程组(Ⅱ)的通解为:k1(0,1,1,0)+k2(-1,2,2,1).问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
计算下列各定积分:
求下列不定积分:
设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式P{丨X+Y丨≥6}≤___________.
随机试题
设z=x2f(x/y,x+y),其中y具有连续的二阶偏导数,求。
下列疾病中,不属于风湿性心脏病二尖瓣狭窄行二尖瓣分离术适应症的是
女性,60岁,已婚,未生育,因绝经后阴道流血3个月,拟诊为子宫内膜癌而手术治疗。术后病理报告为“子宫内膜腺癌Ⅱ级”深肌层浸润,宫颈间质累及双侧输卵管,卵巢未见异常,腹腔黏液细胞学检查(+)。按FIGO(1988年)子宫内膜癌分期法,该病例属下列哪一期
按INCOTERMS2000的规定,关于CFR说法不正确的是______。()按INCOTERMS2000的规定,CFR条件下,卖方履行交货的方式是______。()
下列各项中,被称为准货币的是()。
某兴趣活动小组利用物质问的互变,设计成一个平面魔方,如下图所示:已知:①A、B、C、D、G含有同种元素。②③E是通常情况下密度最小的气体;B与硝酸银溶液反应生成不溶于稀硝酸的白色沉淀,也能将一种氧化物氧化为F,F是含有三种元素的化合物,与A反应生成
设向量a=(1,2),b=(2,3),若向量λa+b与向量c=(-4,-7)共线,则λ=________。
20世纪70年代美国“回归基础教育”改革运动提供理论指导的教育思潮是()。
Whoisthewoman?
MeettheBauls遇见鲍尔人MostWesterners,iftheyknowtheBaulsatall,rememberthenonsequiturof
最新回复
(
0
)