首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2013年)设函数f(χ)=lnχ+. (Ⅰ)求f(χ)的最小值; (Ⅱ)设数列{χn}满足lnχn+<1.证明存在,并求此极限.
(2013年)设函数f(χ)=lnχ+. (Ⅰ)求f(χ)的最小值; (Ⅱ)设数列{χn}满足lnχn+<1.证明存在,并求此极限.
admin
2016-05-30
61
问题
(2013年)设函数f(χ)=lnχ+
.
(Ⅰ)求f(χ)的最小值;
(Ⅱ)设数列{χ
n
}满足lnχ
n
+
<1.证明
存在,并求此极限.
选项
答案
(Ⅰ)f′(χ)=[*],令f′(χ)=0,解得f(χ)的唯一驻点χ=1. 又f〞(1)=[*]=1>0,故f(1)=1是唯一极小值,即最小值. (Ⅱ)由(Ⅰ)的结果知lnχ+[*]≥1,从而有 [*] 于是χ
n
≤χ
n+1
,即数列{χ
n
}单调增加. 又由lnχ
n
+[*]<1,知lnχ
n
<1,得χ
n
<e. 从而数列{χ
n
}单调增加,且有上界,故[*]χ
n
存在. 记[*]χ
n
=a,可知a≥χ
1
>0. 在不等式lnχ
n
+[*]<1两边取极限,得lna+[*]≤1. 又lna+[*]≥1,故lna+[*]=1,可得a=1,即[*]=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/LEt4777K
0
考研数学二
相关试题推荐
设f′(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<bf(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得
设y(x)为微分方程y″-4y′+4y=0满足初始条件y(0)=1,y′(0)=2的特解,则∫01y(x)dx=________.
设a1=1,当n≥1时,an+1=证明:数列{an)收敛并求其极限.
设函数f(x)在点x0处的导数f’(x0)存在,α,β是常数,求极限
求方程的通解。
设A,B为同阶方阵,(Ⅰ)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立.(Ⅲ)当A,B均为实对称矩阵时,试证(Ⅰ)的逆命题成立.
设T=cosnθ,θ=arccosx,求.
(2001年)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
(1988年)设f(χ)=在(-∞,+∞)内连续,则a=_______.
设T=cosnθ,θ=arccosx,求.
随机试题
要使市场机制正常发挥作用,需要具备哪些条件?
用于表彰个体或群体的先进人物,公布他们的事迹,宣布给他们的奖励,分析他们的先进思想,指出应该向他们学习什么,用()
女性40岁,有胆囊结石病史2小时前,无诱因突发上腹剧痛向腰背部放散。伴恶心、呕吐。查体:体温37.5℃,巩膜无黄染,上腹部压痛;反跳痛,以中腹偏左为重。血淀粉酶1024U/dl,尿胆红素(++)。B超显示:胆囊3cm×7cm,多发强回声伴声影,0.5~0.
A、4~6周B、8~10周C、12周D、16周E、20周正常妊娠时,绒毛膜促性腺激素开始下降,是在末次月经后的
侦查人员询问证人时,正确的做法是:
下列对城市建设和房地产开发描述正确的是()。
索赔费用的计算方法有()。
在实践中,个人住房贷款期限在1年以上的,合同期内遇法定利率调整时,银行多是于()起,按相应的利率档次执行新的利率规定。
A公司于2010年7月1日发行2年期、面值总额为1800万元的—次还本、分期付息的债券,债券票面半年利率为2%,发行收入总额为1733.12万元,实际半年利率为3%。A公司每半年计息并付息—次。A公司将发行的公司债券划分为以摊余成本计量的金融负债。要求:
汽车站的1路车20分钟发一次车,5路车15分钟发一次车,两车于8:00同时发车后,再遇到同时发车至少再过______.
最新回复
(
0
)