首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
admin
2018-05-25
77
问题
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
选项
答案
因为A,B正定,所以A
T
=A,B
T
=B,从而(A+B)
T
=A+B,即A+B为对称矩阵.对任意的X≠0,X
T
(A+B)X=X
T
AX+X
T
BX,因为A,B为正定矩阵,所以X
T
AX>0,X
T
BX>0,因此X
T
(A+B)X>0,于是A+B为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/LKX4777K
0
考研数学三
相关试题推荐
设b>a>e,证明:ab>ba.
证明:
当x→π时,若有-1~A(x-π)k,则A=_________,k=_________.
设函数f(x)有连续导数,F(x)=∫0xf(t)fˊ(2a-t)dt.证明:F(2a)-2F(a)=f2(a)-f(0)f(2a).
求下列函数的导数:(1)y=(a>0);(2)y=ef(x)f(ex);(3)(4)设f(t)具有二阶导数,f(x)=x2,求f[fˊ(x)],[f(f(x))]ˊ.
已知函数u=u(x,y)满足方程.试选择参数a,b,利用变换u(x,y)=v(x,y)eax+by均将原方程变形,使新方程中不出现一阶偏导数项.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值。
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA.证明:当λ>0时,矩阵B为正定矩阵.
随机试题
一个公司使用ExchangeServer2003建立了邮件系统。公司下属北京、广州、上海3个分支机构。公司总经理经常会给某个区域的全体员工发信,但收件人太多感觉不方便,为此特意咨询公司网络管理员,管理员正确的处理方式是()。
临床实验室测定血清游离钙的常规方法是A.原子吸收分光光度法B.火焰光度法C.高效液相色谱法D.分光光度法E.离子选择电极法
A.麦胶性肠病B.先天性乳糖酶缺乏腹泻C.肠易激综合征D.末端回肠炎E.胰性霍乱综合征吸收障碍性腹泻见于
某甲因犯非国家工作人员受贿罪于1995年5月3日被依法逮捕,1995年7月29日被判处4年有期徒刑,1995年8月17日交付执行。对此案下列哪些说法是正确的:
()方式主要用于发展收费公路、发电厂、铁路、废水处理设施和城市地铁等基础设施项目。
下列各项固定资产,应当计提折旧的有()
某企业20×8年发生下列经济业务:(1)1月1日向银行借入800000元,用于某项工程,期限5年,年利率10%(实际利率与合同利率一致),合同规定到期一次还本付息。该企业每半年计算利息费用。该工程将于20×9年完工,假设工程建造期间计提的利息费用均
—Wasitnotuntillastweek______hedecidedtogiveupsmoking?—No,hebegan______hesawthenewfilmlastmonth.
根据所给材料,回答问题。这几天,保温杯突然火了。缘起只是一位曾经“摇滚”,如今已年过半百的乐队鼓手端着保温杯喝水的照片,当事人今昔之间的对比,引起了对所谓“中年危机”的集体共鸣。有人认为,这样的共鸣反映出一种对中年心态的警惕。耐人寻味的
如果函数f(x)的定义域为[1,2],则函数f(x)+f(x2)的定义域是.
最新回复
(
0
)