首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,其特征值为λ1=0,λ2=λ3=1,α1,α2为A的两个不同特征向量,且A(α1+α2)=α2. (Ⅰ)证明:α1,α2正交. (Ⅱ)求AX=α2的通解.
设A为三阶实对称矩阵,其特征值为λ1=0,λ2=λ3=1,α1,α2为A的两个不同特征向量,且A(α1+α2)=α2. (Ⅰ)证明:α1,α2正交. (Ⅱ)求AX=α2的通解.
admin
2019-06-29
54
问题
设A为三阶实对称矩阵,其特征值为λ
1
=0,λ
2
=λ
3
=1,α
1
,α
2
为A的两个不同特征向量,且A(α
1
+α
2
)=α
2
.
(Ⅰ)证明:α
1
,α
2
正交.
(Ⅱ)求AX=α
2
的通解.
选项
答案
(Ⅰ)若α
1
,α
2
是属于特征值λ
1
=0的特征向量,则A(α
1
+α
2
)=Aα
1
+Aα
2
=0≠α
2
,矛盾; 若α
1
,α
2
是属于特征值λ
2
=λ
3
=1的特征向量,则A(α
1
+α
2
)=Aα
1
+α
2
=α
1
+α
2
≠α
2
,矛盾, 从而α
1
,α
2
是分属于两个不同特征值对应的特征向量, 因为A是实对称矩阵,所以α
1
,α
2
正交. (Ⅱ)因为A相似于[*],所以r(A)=2,方程组AX=0基础解系含一个线性无关的解向量. 若α
1
是属于特征值1的特征向量,α
2
为属于特征值0的特征向量, 此时A(α
1
+α
2
)=Aα
1
+Aα
2
=α
1
≠α
2
,矛盾, 从而α
1
是属于特征值0的特征向量,α
2
是属于特征值1的特征向量, 由Aα
1
=0,Aα
2
=α
2
得AX=α
2
的通解为X=kα
1
+α
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/LOV4777K
0
考研数学二
相关试题推荐
已知α1=(a,a,a)T,α2=(-a,a,b)T,α3=(-a,-a,-b)T线性相关,则a,b满足关系式_______.
如果,则|A|=_______.
设z=xf(x+y)+g(xy,x2+y2),其中f,g分别阶连续可导和二阶连续可偏导,则=__________
函数F(x)=∫1x(1一ln)dt(x>0)的递减区间为___________.
微分方程xy’’+3y’=0的通解为_________。
设f(x)是连续函数,且f(t)dt=x,则f(7)=______.
设α,β,γ1,γ2,γ3都是4维列向量,且|A|=|α,γ1,γ2,γ3|=4,|B|=|β,2γ1,3γ2,γ3|=21,则|A+B|=________.
曲线y=的斜渐近线方程为_______。
甲乙两人赛跑,计时开始时,甲在乙前方10(单位:米)处,图中实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分的面积的数值依次为10,20,3。计时开始后乙追上甲的时刻记为t0(单位:s),则()
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0
随机试题
过氧化值(peroxidevalue,POV)
东陵的皇帝陵中,所用木材均为楠木,素有“铜梁铁柱”之称的是()。
最易通过产道分娩的胎位是不能通过产道分娩的胎位是
支气管哮喘与心源性哮喘一时难以鉴别.应采用下列哪种药物治疗
某房屋建筑采用桩基础,桩基设计等级为甲级,总桩数为600根,采用单桩竖向抗压承载力静载试验进行验收检测,其抽检数量至少为()根。
()是指Windows应用程序的工作方式,是随应用程序打开在桌面的一个矩形区域。
在全国银行间市场质押式回购交易的结算过程中,回购双方可以选择的交收方式有()。
下列不属于我国商业银行证券投资的对象的是()。
关于企业标准贯彻实施进行监督的主要内容,下列表述正确的有()。
A、 B、 C、 D、 E、 D
最新回复
(
0
)