首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,其特征值为λ1=0,λ2=λ3=1,α1,α2为A的两个不同特征向量,且A(α1+α2)=α2. (Ⅰ)证明:α1,α2正交. (Ⅱ)求AX=α2的通解.
设A为三阶实对称矩阵,其特征值为λ1=0,λ2=λ3=1,α1,α2为A的两个不同特征向量,且A(α1+α2)=α2. (Ⅰ)证明:α1,α2正交. (Ⅱ)求AX=α2的通解.
admin
2019-06-29
89
问题
设A为三阶实对称矩阵,其特征值为λ
1
=0,λ
2
=λ
3
=1,α
1
,α
2
为A的两个不同特征向量,且A(α
1
+α
2
)=α
2
.
(Ⅰ)证明:α
1
,α
2
正交.
(Ⅱ)求AX=α
2
的通解.
选项
答案
(Ⅰ)若α
1
,α
2
是属于特征值λ
1
=0的特征向量,则A(α
1
+α
2
)=Aα
1
+Aα
2
=0≠α
2
,矛盾; 若α
1
,α
2
是属于特征值λ
2
=λ
3
=1的特征向量,则A(α
1
+α
2
)=Aα
1
+α
2
=α
1
+α
2
≠α
2
,矛盾, 从而α
1
,α
2
是分属于两个不同特征值对应的特征向量, 因为A是实对称矩阵,所以α
1
,α
2
正交. (Ⅱ)因为A相似于[*],所以r(A)=2,方程组AX=0基础解系含一个线性无关的解向量. 若α
1
是属于特征值1的特征向量,α
2
为属于特征值0的特征向量, 此时A(α
1
+α
2
)=Aα
1
+Aα
2
=α
1
≠α
2
,矛盾, 从而α
1
是属于特征值0的特征向量,α
2
是属于特征值1的特征向量, 由Aα
1
=0,Aα
2
=α
2
得AX=α
2
的通解为X=kα
1
+α
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/LOV4777K
0
考研数学二
相关试题推荐
设α为n维单位列向量,E为n阶单位矩阵,则矩阵E一ααT的秩为__________.
设3阶方阵A=(α1,α2,α3)的3个特征值各不相同,且3维列向量α1,α2,α3满足α1=α2+2α3,则r(A)=__________.
设函数y=f(x)由方程xy+21nx=y4所确定,则曲线y=f(x)在(1,1)处的法线方程为_______.
设y=y(x,z)是由方程ex+y+z=x2+y2+z2确定的隐函数,则=________
设A为3阶方阵,|A|=2,A*为A的伴随矩阵.若交换A的第1行和与第2行得矩阵B,则|BA*|=_______.
曲线对应点处的曲率为_______.
设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T。p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组。
设xOy平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0)。若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0xS(t)dt(x≥0)。
求初值问题的解。
随机试题
根据原发性高血压危险的分层,属于高危险组的是
江苏省住宅工程施工质量通病控制应按()进行专项验收。
承包商应保障并保持雇主免受由以下()事项产生或与之有关的任何其他索赔引出的损害。
()工作就是通过实际情况与施工成本计划相比较,找出二者之间的差别,分析偏差产生的原因,从而采取措施加以改进。
20世纪80年代以来,各国银行间的竞争日益激烈,而西方各国关于银行资本定义不统一,资本充足率也没有规范标准。1988年7月,美国、英国、法国、加拿大等12国的中央银行达成巴塞尔协议。根据上述资料,回答下列问题:巴塞尔协议明确将资本分为(
下列各项中,不属于所有者权益的有()。
皮亚杰认为,在个体从出生到成熟的发展过程中,人格结构在与环境的相互作用中不断重构,从而表现出具有不同质的不同阶段。()(2015.广西)
人民警察的纪律与义务既有联系又有区别。下列关于二者关系说法正确的有()。
全面禁酒到底是不是摆设、能不能消除质疑的杂音.不在于有没有相关规定,而在于能不能有力执行。再好的制度,没有落实都是一个“空”,其生命力在于执行,其威严在于践行。如果一味地唱高调,只会沦为“_______”,人们常常戏谑的“酒精考验的干部”,终也难“久经考验
WhichofthefollowingdoesLi-Fimostprobablystandfor?
最新回复
(
0
)