首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
admin
2018-01-26
39
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其α
2
,α
3
,α
4
线性无关,α
1
=2α
2
-α
3
,若β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解。
选项
答案
由α
2
,α
3
,α
4
线性无关,且α
1
=2α
2
-α
3
,知R(A)=3,从而Ax=0的基础解系只含有一个解向量。由α
1
-2α
2
+α
3
+0α
4
=0,知(1,-2,1,0)
T
为Ax=0的一个基础解系。 又β=α
1
+α
2
+α
3
+α
4
,即 (α
1
,α
2
,α
3
,α
4
)[*]=β, 知(1,1,1,1)
T
为Ax=β的一个特解。因此,Ax=β的通解为(1,1,1,1)
T
+k(1,-2,1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/LSr4777K
0
考研数学一
相关试题推荐
设f(x)=,g(x)=x3+x4,当x→0时,f(x)是g(x)的().
设a>0,函数f(x)在[0,+∞)上连续有界,证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.设C=E—ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1一α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
已知线性方程组方程组有解时,求出方程组的导出组的基础解系;
已知线性方程组a,b为何值时,方程组有解;
求下面线性方程组的解空间的维数:并问ξ1=[9,一1,2,一1,1]T是否属于该解空间.
随机试题
早产儿,胎龄30周出生,出生体重1180g,曾经用机械通气及吸氧治疗,有发生早产儿视网膜病的可能。早期检查视网膜的最适当的时间是
男,60岁,间歇性跛行6年。下蹲时疼痛减轻,骑自行车正常。直腿抬高试验阴性。X线片示:腰椎骨质增生明显。最可能的诊断是
在系统模型中,政策资源包括
无效造血过多与何项有关
2013年卷四案情:《政府采购法》规定,对属于地方预算的政府采购项目,其集中采购目录由省、自治区、直辖市政府或其授权的机构确定并公布。张某在浏览某省财政厅网站时未发现该省政府集中采购项目目录,在通过各种方法均未获得该目录后,于2013年2月25日
下列人员中可以担任管理人的是:()
下列各项指标中,属于评价盈利能力状况基本指标的是()。
基金宣传推介材料中可以登载的是()。
“科学技术是第一生产力”,就是说科学技术是直接生产力。()
通常我们使用哪个方法来为一个部件注册事件监听器
最新回复
(
0
)