首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
admin
2018-01-26
34
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其α
2
,α
3
,α
4
线性无关,α
1
=2α
2
-α
3
,若β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解。
选项
答案
由α
2
,α
3
,α
4
线性无关,且α
1
=2α
2
-α
3
,知R(A)=3,从而Ax=0的基础解系只含有一个解向量。由α
1
-2α
2
+α
3
+0α
4
=0,知(1,-2,1,0)
T
为Ax=0的一个基础解系。 又β=α
1
+α
2
+α
3
+α
4
,即 (α
1
,α
2
,α
3
,α
4
)[*]=β, 知(1,1,1,1)
T
为Ax=β的一个特解。因此,Ax=β的通解为(1,1,1,1)
T
+k(1,-2,1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/LSr4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设,求n,c的值.
设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数,证明:不等式
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X千克是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
对于任意二事件A1,A2,考虑二随机变量试证明:随机变量X1和X2独立的充分必要条件是事件A1和A2相互独立.
证明:r(A+B)≤r(A)+r(B).
设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[一1,1,4,一1]T,α3=[5,一1,一8,9]T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A能否相似于对角阵,说明理由.
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
随机试题
男性患者,34岁,胸腹主动脉型大动脉炎,关于该患者的血压正确的是
左前斜位心影后缘下部是哪个房室的投影
混悬型液体制剂系指难溶性固体药物以微粒状态分散于分散介质中形成的非均相的液体制剂,也包括干混悬剂。下列常用附加剂中,不是助悬剂的是
下列极限式中,能够使用洛必达法则求极限的是()。
L为连接(1,0)与(0,1)的直线段,则=()。
钢结构的一般安装顺序应为()。
期货从业人员不得迎合投资者的不合理要求,不得为了投资者利益而损害国家利益、所在期货经营机构利益或者他人的合法权益。( )
以下业务应该按照“交通运输业”缴纳营业税的有()。
金融市场常被称为“资金的蓄水池”和“国民经济的晴雨表”,分别指的是金融市场的()。
张某意图杀害李某,一日晚藏于李某院门外,从虚掩的门缝中见一黑影在移动,即认为是李某,遂举枪射击,次日方知打死的不是李某,而是李某家中的一头牲畜。张某()。
最新回复
(
0
)