首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知r(A)=r1,且方程组Ax=α有解r(B)=r2,=R(B)=R2无解,设A=[α1,α2,…,αN],B=[β1β2……βn],且r(α1,α2……αn,β1β2……βn,β)=r,则 ( )
已知r(A)=r1,且方程组Ax=α有解r(B)=r2,=R(B)=R2无解,设A=[α1,α2,…,αN],B=[β1β2……βn],且r(α1,α2……αn,β1β2……βn,β)=r,则 ( )
admin
2015-08-17
34
问题
已知r(A)=r
1
,且方程组Ax=α有解r(B)=r
2
,=R(B)=R
2
无解,设A=[α
1
,α
2
,…,α
N
],B=[β
1
β
2
……β
n
],且r(α
1
,α
2
……α
n
,β
1
β
2
……β
n
,β)=r,则 ( )
选项
A、r=r
1
+r
2
B、r>r
1
+r
2
C、r=r
1
+r
2
+1
D、r≤r
1
+r
2
+1
答案
D
解析
由题设r(α
1
,α
2
……α
n
,α)=r
1
,r(β
1
β
2
……β
n
,β)=r
2
+1,故r(α
1
,α
2
……α
n
,β
1
β
2
……β
n
,β)≤r
1
+r
2
+1.
转载请注明原文地址:https://kaotiyun.com/show/S1w4777K
0
考研数学一
相关试题推荐
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设向量组α1=(1,3,2,0)T,α2=(7,0,14,3)T,α3=(2,一1,0,1)T,α4=(5,1,6,2)T,α5=(2,一1,4,1)T,求该向量组的秩和一个极大线性无关组,并把不是极大线性无关组的向量用此极大线性无关组线性表示.
已知二次型f(χ1,χ2,χ3)=XTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为.(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
一个袋内装有5个白球,3个红球.第一次从袋内任意取一个球,不放回,第二次又从袋内任意取两个球,Xi表示第i次取到的白球数(i=1,2).求:P{X1=0,X2≠0},P{X1=X2},P{X1X2=0}.
设A为n阶实对称可逆矩阵f(χ1,χ2,…,χN)=.(1)记X=(χ1,χ2,…,χn)T,把二次型f(χ1,χ2,…,χn)写成矩阵形式;(2)二次型g(X)=XTAX是否与f(χ1,χ2,…,χn)合同?
已知齐次线性方程组有非零解,且是正定矩阵.求xTx=1,xTAx的最大值和最小值.
设A=(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
随机试题
实现中华民族伟大复兴,关键在()
有的人“在思维方式上,对问题的看法总是从自我的角度去考虑问题”,这属于()
共同基金给予投资者的好处是
患者男,54岁。中风后长期卧床4个月,康复介入后,直立床站起时患者头晕,眼前发黑。患者长期卧床对泌尿系统的损害是
下列不符合胸壁疾患所致胸痛特点的是
需要摘挂钩的斜井提升用钢丝绳宜采用的旋捻方向是()。
建立家庭基本生活保障储备后,应为自己的投资建立第二道防火墙。下列保险中,属于家庭保障范围的是()。
古代人物画中默写的典范作品是五代________画的《________》。
知觉的四个基本特征是选择性、理解性、整体性和——。
KeepingthefocusfreshTheexpirationdateoncontactlenssolutionisthedateafterwhichthemanufacturercannotguarante
最新回复
(
0
)