首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下三个命题: ①若数列{un|收敛于A,则其任意子数列{uni}必定收敛于A; ②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A.
以下三个命题: ①若数列{un|收敛于A,则其任意子数列{uni}必定收敛于A; ②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A.
admin
2018-08-22
116
问题
以下三个命题:
①若数列{u
n
|收敛于A,则其任意子数列{u
n
i
}必定收敛于A;
②若单调数列{x
n
}的某一子数列{x
n
i
}收敛于A,则该数列必定收敛于A;
③若数列{x
2n
}与{x
2n+1
}都收敛于A,则数列{x
n
}必定收敛于A.
正确的个数为 ( )
选项
A、0
B、1
C、2
D、3
答案
D
解析
对于命题①,由数列收敛的定义可知,若数列{u
n
}收敛于A,则对任意给定的ε>0,存在自然数N,当n>N时,恒有
|u
n
一A|<ε,
则当n
i
>N时,恒有
|u
n
i
一A|<ε,
因此数列{u
n
i
}也收敛于A,可知命题正确.
对于命题②,不妨设数列{x
n
}为单调递增的,即
x
1
≤x
2
≤…≤x
n
≤…,
其中某一给定子数列{x
n
i
}收敛于A,则对任意给定的ε>0,存在自然数N,当n
i
>N时,恒有
|x
n
i
一A|<ε.
由于数列{x
n
}为单调递增的数列,对于任意的n>N,必定存在n
i
≤n≤n
i+1
,有
一ε<x
n
i
—A≤x
n
一A≤x
n
i+1
一A<ε,
从而 |x
n
一A|<ε,
可知数列{x
n
}收敛于A因此命题正确.
对于命题③,因
由极限的定义可知,对于任意给定的ε>0,必定存在自然数N
1
,N
2
,使得
当2n>N
1
时,恒有|x
2n
一A|<ε;
当2n+1>N
2
时,恒有|x
2n+1
一A|<ε.
取N=max{N
1
,N
2
},则当n>N时,总有|x
n
一A|<ε.因此
可知命题正确.
故答案选择D.
转载请注明原文地址:https://kaotiyun.com/show/LTj4777K
0
考研数学二
相关试题推荐
已知向量组α1,α2,…,αs-1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设f(x)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.求证:存在ξ∈(0,π),使得f’(ξ)=0.
A、 B、 C、 D、 B此题若立刻作变换tanx=t或tan,则在0≤x≤2π上不能确定出单值连续的反函数x=ψ(t).可先利用周期性和奇偶性将积分区间缩小,在此小区间上作变换tanx=t.在第2式
设函数f(u)有连续的一阶导数,f(2)=1,且函数满足求z的表达式.
设f(x)为连续函数,a与m是常数且a>0,将二次积分I=∫0ady∫0yem(a-x)f(x)dx化为定积分,则I=_______.
已知f(x)=arctanx,求f(n)(0).
设函数厂(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则_________.
求下列函数f(x)在x=0处带拉格朗日余项的n阶泰勒公式:(Ⅰ)f(x)=;(Ⅱ)f(x)=exsinx.
设求常数a,使
设求一个4×2矩阵B,使AB=O,且r(B)=2.
随机试题
元代前期杂剧创作的中心是()
A.LDH1B.LDH2C.LDH3D.LDH5肝脏中富含的LDH同工酶是
测验工具能够测量出其所要测东西的真实程度称为
确保()是仪表工程线路和管路安装的关键。
背景资料:某公路工程,合同价4000万元,合同工期270天。合同条款约定:(1)工程预付款为合同价的10%,开工当月一次性支付;(2)工程预付款扣回时间及比例:自工程款(含工程预付款)支付至合同价款的60%的当月起,分两个月平均扣回;(3)工程
城市用地划分为()大类。
审核目的应由()确定。[2007年真题]
当前许多人都在呼吁取消重点中学,但老百姓还是想把孩子送到重点中学就读.对此,你有什么看法?
说出下列情形是缺乏内在效度还是缺乏外在效度?几个人同做一项人种志研究,但不能取得一致意见。
Thedebateaboutproblemdrinkingandhowtostopitnowadayscentresmostontheworking-classyoung.Theyare【M1】______highly
最新回复
(
0
)