首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 设曲线y=f(x),其中f(x)是可导函数,且f(x)>0,已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍.求该曲线方程.
[2009年] 设曲线y=f(x),其中f(x)是可导函数,且f(x)>0,已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍.求该曲线方程.
admin
2019-03-30
43
问题
[2009年] 设曲线y=f(x),其中f(x)是可导函数,且f(x)>0,已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍.求该曲线方程.
选项
答案
由题设有[*]两边对t求导得到 [*] 再求导得到2f(t)f’(t)=2f(t)+tf’(t).令f(t)=y,整理得到 [*] 显然这是一阶齐次微分方程,令[*]则[*]代入式②得到[*]分离变量得 [*] 两边积分得到[*]即 u
-1/3
(3-2u)
-2/3
=Ct. ③ 当t=1时,由式①得到f(t)=1或f(t)=0.因f(t)>0,故f(t)=1,即y=1,从而u=1,代入式③得C=1.由式③得到 1/t=u
1/3
(3-2u)
2/3
, 即 u(3-2u)
2
=1/t
3
, 代入u=y/t化简得y(3t-2y)
2
=1, 即[*] 故所求曲线方程为[*] 解二 由式①得[*]即[*] 其通解为[*] 因t=1时,y=1,即f(1)=1,故C=1/3,因而[*]故所求曲线方程为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/LaP4777K
0
考研数学三
相关试题推荐
设有正项级数是它的部分和。(Ⅰ)证明收敛;(Ⅱ)判断级数是条件收敛还是绝对收敛,并给予证明。
求函数f(x)=sinx的间断点,并指出类型。
微分方程y"+2y’+5y=0的通解为________。
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0()
设f(x,y)=,讨论函数f(x,y)在点(0,0)处的连续性与可偏导性.
求幂级数(2n+1)xn的收敛域及和函数.
设曲线y=a+x-x3,其中a<0.当x>0时,该曲线在x轴下方与y轴、x轴所围成图形的面积和在x轴上方与x轴所围成图形的面积相等,求a.
曲线y=x(x-1)(2-x)与x轴所围成的图形面积可表示为().
求微分方程(y+)dx-xdy=0的满足初始条件y(1)=0的解.
随机试题
正常肾脊角的角度为
某机构投资者对已在上海证券交易所上市的A公司进行调研时,发现A公司如下信息:(1)甲为A公司的实际控制人,通过B公司持有A公司34%的股份。甲担任A公司的董事长、法定代表人。2009年8月7日,经董事会决议(甲回避表决),A公司为B公司向C银行借
刘某于2010年7月9日向国家知识产权局提交了一件实用新型专利申请。刘某的下列哪些具有相同主题的专利申请不能作为该申请要求本国优先权的基础?
为了防止第三方偷看或篡改用户与Web服务器交互的信息,可以采用在客户端加载数字证书的方法。()
公文立卷的原则是()。
0,7,26,63,124,()。
Whatwrongideadidthemanhaveaboutcamping?
WhydomanyAmericansandEuropeansfailtospreadtheirfinancialriskswheninvesting?
InSeptember,morethanadozenwhalesbeachedthemselvesintheCanaryIslands.Rescuerstriedtowaterdownthewhalesandkee
ToallAmericans,anotherbasic(36)______intheirconstitutionistheBillofrights,adoptedin1971.Thisconsistsof10ver
最新回复
(
0
)