首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 设曲线y=f(x),其中f(x)是可导函数,且f(x)>0,已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍.求该曲线方程.
[2009年] 设曲线y=f(x),其中f(x)是可导函数,且f(x)>0,已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍.求该曲线方程.
admin
2019-03-30
65
问题
[2009年] 设曲线y=f(x),其中f(x)是可导函数,且f(x)>0,已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍.求该曲线方程.
选项
答案
由题设有[*]两边对t求导得到 [*] 再求导得到2f(t)f’(t)=2f(t)+tf’(t).令f(t)=y,整理得到 [*] 显然这是一阶齐次微分方程,令[*]则[*]代入式②得到[*]分离变量得 [*] 两边积分得到[*]即 u
-1/3
(3-2u)
-2/3
=Ct. ③ 当t=1时,由式①得到f(t)=1或f(t)=0.因f(t)>0,故f(t)=1,即y=1,从而u=1,代入式③得C=1.由式③得到 1/t=u
1/3
(3-2u)
2/3
, 即 u(3-2u)
2
=1/t
3
, 代入u=y/t化简得y(3t-2y)
2
=1, 即[*] 故所求曲线方程为[*] 解二 由式①得[*]即[*] 其通解为[*] 因t=1时,y=1,即f(1)=1,故C=1/3,因而[*]故所求曲线方程为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/LaP4777K
0
考研数学三
相关试题推荐
函数f(x)=(x2+x一2)|sin2πx|在区间上不可导点的个数是()
微分方程y"+2y’+5y=0的通解为________。
已知方程组有解,证明:方程组无解。
齐次方程组有非零解,则λ=________。
设A是n阶矩阵,α是n维列向量,若=r(A),则线性方程组()
设函数f(t)连续,则二重积分dθ∫2cosθ2f(r2)rdr=()
设函数f(x)在[0,1]上连续,且f(x)>0,则=______.
求微分方程y’’=y’2满足初始条件y(0)=y’(0)=1的特解.
求微分方程x2y’+xy=y2满足初始条件y(1)=1的特解.
随机试题
布袋除尘器为二级回收装置,回收后的粉末较细,一般仍可重复使用。
关于原料配比,下述不正确的是()。
男性,36岁,左胸部撞伤2小时,伴胸痛。检查:血压10.0/7.5kPa,心率112次/分。X线检查:左胸部6、7、8肋骨骨折。全腹压痛、反跳痛,腹穿吸出不凝血。病人主要的病理生理改变为
牙根形成的量取决于
甲方与乙方2002年4月订立买卖合同,约定甲方5月1日发货,乙方7月8日前付款。根据已知条件进行判断()。
Q企业为增值税一般纳税人,某日该企业购进原材料,取得增值税专用发票注明原材料价款为20万元,增值税税额为3.4万元,发票等结算凭证已经收到,货款未支付,材料已验收入库,则该批材料的入账价值为23.4万元。()
某企业签订了如下经济合同:与甲公司签订技术开发合同,合同总金额为400万元,其中研究开发费100万元;与乙公司签订货物销售合同,销售额为300万元,运输费用4万元,其中包括保险费0.5万元、装卸费0.57元,该企业应缴纳印花税( )元。
商业银行在流动性管理的过程中,所需要处理的一对矛盾包括()。
商业银行定期存款的最大弱点在于()。
随着产量的增加,短期平均固定成本()。(中山大学,2011)
最新回复
(
0
)