首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 (Ⅰ)计算PTDP,其中P=; (Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 (Ⅰ)计算PTDP,其中P=; (Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
admin
2019-03-19
73
问题
设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。
(Ⅰ)计算P
T
DP,其中P=
;
(Ⅱ)利用(Ⅰ)的结果判断矩阵B—C
T
A
-1
C是否为正定矩阵,并证明你的结论。
选项
答案
[*] (Ⅱ)矩阵B一C
T
A
-1
C是正定矩阵。由(Ⅰ)的结果可知,矩阵D合同于矩阵M=[*],因为D为正定矩阵,可知矩阵M为正定矩阵。 又因矩阵M为对称矩阵,所以B一C
T
A
-1
C为对称矩阵。 则对X=(0,,…,0)
T
及任意的Y=(y
1
,y
2
,…,y
n
)
T
≠0,有 (X
T
,Y
T
)[*]=Y
T
(B-C
T
A
-1
C)Y>0。 因此B—C
T
A
-1
为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/LeP4777K
0
考研数学三
相关试题推荐
求幂级数的收敛区间与和函数f(x)。
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式(Ⅰ)验证f"(u)+=0;(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式。
设A是n阶矩阵,若存在正整数后,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB—1。
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。(Ⅰ)试将x=x(y)所满足的微分方程=0变换为y=y(x)满足的微分方程;(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
设f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分必要条件是()
设函数f(x),g(x)具有二阶导数,且g"(x)<0。若g(x0)=a是g(x)的极值,则f[g(x)]在x0取极大值的一个充分条件是()
设线性相关,则a=______.
设L:y=sinx(0≤x≤),由x=0,L及y=sinx围成面积S1(t);由y=sint,L及x=围成面积S2(t),其中0≤t≤.(1)t取何值时,S(t)=S1(t)+S2(t)取最小值?(2)t取何值时,S(t)=S1(t)+S2(t)取最大
随机试题
下述关于多烯磷脂酰胆碱的描述,正确的有
前间壁心肌梗死特征性心电图改变,见于
A.滑膜B.肌肉及肌腱C.软骨D.骨E.韧带成人股骨头无菌坏死病变始于
下列关于银行监管活动中,涉及批准事项的说法错误的有:
非经常性损益是指与公司正常经营业务无直接关系,以及虽与正常经营业务相关,但由于其性质特殊和偶发性,影响报表使用人对公司经营业绩和营利能力做出正常判断的各项交易和事项产生的损益。根据上述定义,下列描述属于非经常性损益的是:
WhenLiamMcGeedepartedaspresidentofBankofAmericainAugust,hisexplanationwassurprisinglystraightup.Ratherthancl
软件生命周期中所花费用最多的阶段是
Whatisthispassagemainlyabout?
HowManybuildingplacesdoestheBuildingServicelookateachMonthtoseeifthingsaregoingonWell?Whatshouldyoudoifyo
A、ThetalksshouldincludeNorthKorea’skidnappingofJapanesecitizensduringtheColdWarperiod.B、NorthKorea’shumanright
最新回复
(
0
)