首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α是一个n维非零实列向量.构造n阶实对称矩阵A,使得它的秩=1,并且α是A的特征向量,特征值为非零实数A.
设α是一个n维非零实列向量.构造n阶实对称矩阵A,使得它的秩=1,并且α是A的特征向量,特征值为非零实数A.
admin
2019-04-22
55
问题
设α是一个n维非零实列向量.构造n阶实对称矩阵A,使得它的秩=1,并且α是A的特征向量,特征值为非零实数A.
选项
答案
αα
T
是n阶实对称矩阵,秩为1,并且α是αα
T
的特征向量,特征值为α
T
α=(α,α).和题目要求只差在α的特征值上.于是记c=λ/(α,α),设A=cαα
T
,则A是n阶实对称矩阵,秩=1,并且 Aα=cαα
T
α=c(α,α)α=λα.
解析
转载请注明原文地址:https://kaotiyun.com/show/LtV4777K
0
考研数学二
相关试题推荐
积分=()
设f(χ)=在χ=0处可导,则a,b满足
已知α1,α2是非齐次线性方程组Ax=b的两个不同的解,那么中,仍是线性方程组Ax=b特解的共有()
如果函数y1(x)与y2(x)都是以下四个选项给出方程的解,设C1与C2是任意常数,则y=C1y1(x)+C2y2(x)必是()的解.
抛物线y2=2x与直线y=x一4所围成的图形的面积为()
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
设y=y(χ)是一向上凸的连续曲线,其上任意一点(χ,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=χ+1,求该曲线方程,并求函数y(χ)的极值.
设二次型f=2χ12+2χ22+aχ32+2χ1χ2+2bχ1χ3+2χ2χ3经过正交变换X=QY化为标准形f=y12y22+4y32,求参数a,b及正交矩阵Q.
用拉格朗日乘数法计算下列各题:(1)欲围一个面积为60m2的矩形场地,正面所用材料每米造价10元,其余三面每米造价5元.求场地长、宽各为多少米时,所用材料费最少?(2)用a元购料,建造一个宽与深相同的长方体水池,已知四周的单位面积材料费为底面单位面积材
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0’试证明存在ξ∈(a,b)使=0.
随机试题
影响细胞内外水分布的主要因素是()
术后病人出现血栓性静脉炎,护士应准备给予护理,以防止()
A.腹膜炎B.腹膜纤维化C.腹透管移位D.腹透管周围网膜包绕E.腹透管堵塞某患者尿毒症腹膜透析近3年,过程顺利,1天前发现腹透液完全不能流出,最大可能原因是
尿中蛋白质含量超过多少时称为“蛋白尿”
患儿,男,4岁,因肾病综合征入院,表现有水肿、蛋白尿,目前无感染迹象。患儿入院后,护士为他制订护理计划,下列哪项不妥
下列工程建设项目,经批准可以不进行施工招标的包括()。
由于人机系统中的可靠性的因素众多且随机变化,因此人的可靠性是不稳定的,则人机系统可靠度采用()来提高。
在企业战略咨询时,以下关于资料收集的说法,错误的是()。
把黑桃、红桃、方片、梅花四种花色的扑克牌按黑桃10张、红桃9张、方片7张、梅花5张的顺序循环排列。问:第2015张扑克牌是什么花色?
A、 B、 C、 D、 A
最新回复
(
0
)