首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
admin
2018-04-18
53
问题
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η
1
,…,η
n-r+1
是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k
1
η
1
+…+k
n-r+1
η
n-r+1
,其中k
1
+…+k
n-r+1
=1。
选项
答案
设X为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n-r+1
线性无关且均为Ax=b的解。 取ξ
1
=η
2
一η
1
,ξ
2
=η
3
一η
1
,η
1
,…,ξ
n-r
=η
n-r+1
一η
1
,根据线性方程组解的结构,它们均为对应齐次方程Ax=0的解。 下面用反证法证: 设ξ
1
,ξ
2
,…,ξ
n-r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n-r
使得 l
1
ξ
1
+l
2
ξ
2
+…+l
n-r
ξ
n-r
=0, 即 l
1
(η
2
—η
1
)+l
2
(η
3
一η
1
)+…+l
n-r
(η
n-r+1
一η
1
)=0,也即 一(l
1
+l
2
+…+l
n-r
)η
1
+l
1
η
2
+l
2
η
3
+…+l
n-r
η
n-r+1
=0。 由η
1
,η
2
,…,η
n-r+1
线性无关知一(l
1
+l
2
+…+l
n-r
)=l
1
=l
2
=…=l
n-r
=0, 这与l
1
,l
2
,…,l
n-r
不全为零矛盾,故假设不成立。因此ξ
1
,ξ
2
,…,ξ
n-r
线性无关,是Ax=0的基础解系。 由于x,η
1
均为Ax=b的解,所以X一η
1
为Ax=0的解,因此x一η
1
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,设 x一η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n-r+1
ξ
n-r
=k
2
(η
2
一η
1
)+k
3
(η
3
一η
1
)+…+k
n-r+1
(η
n-r+1
一η
1
), 则x=η
1
(1一k
2
一k
3
一…一k
n-r+1
)+k
2
η
2
+k
3
η
3
+…+k
n-r+1
η
n-r+1
, 令k
1
=1一k
2
一k
3
…一k
n-r+1
,则k
1
+k
2
+k
3
+…+k
n-r+1
=1,从而 x=k
1
η
1
+k
2
η
2
+…+k
n-r+1
η
n-r+1
恒成立。
解析
转载请注明原文地址:https://kaotiyun.com/show/wtk4777K
0
考研数学二
相关试题推荐
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=B的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
[*]
[*]
设n阶矩阵A与B等价,则必有().
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导.
本题为“1x”型未定式,除可以利用第二类重要极限进行计算或化为指数函数计算外,由于已知数列的表达式,也可将n换为x转化为函数极限进行计算.一般[*]
曲线渐近线的条数为().
A、x=0必是g(x)的第一类间断点B、x=0必是g(x)的第二类间断点C、x=0必是g(x)的连续点D、g(x)在点x=0处的连续性与口的取值有关D
设函数问a为何值时,f(x)在x=0处连续;a为何值时,x=0是f(x)的可去区间断点?
随机试题
A、重症肺炎B、呼吸衰竭C、纵隔积气D、皮下气肿E、心力衰竭A,B,C,D提示:胸片:①肺炎,右肺门外透亮腔影;②明显纵隔气肿;③前上胸壁及双侧颈部皮下积气;④右侧肺组织被压迫50%;⑤右侧少量胸腔积液。
A.气厥B.痰厥C.血厥D.暑厥患者恼怒后突然昏倒,呼吸气促,口噤握拳,舌淡红,脉弦。其诊断是
Somenovelistsimmodestlyidealizedandexaggeratethesignificanceoftheirwork,butothers,________toexalttheroleofthe
下列药物是β受体阻断药的是
糖皮质激素昼夜分泌规律为()
隐蔽工程在隐蔽以前,承包人应当通知发包人检查。发包人没有及时检查的,承包人可以()。
【背景资料】某隧洞工程,施工单位与项目业主签订了120000万元的施工总承包合同,合同约定:每延长(或缩短)1天工期,处罚(或奖励)金额3万元。施工过程中发生了以下事件:事件1:施工前,施工单位拟定了三种隧洞开挖施工方案,并测算了各方案的施工成本,见
教育专家李教授提出,每个人在自己的一生中,都要不断地努力,否则就会像龟兔赛跑的故事一样,一时跑得快并不能保证一直领先。如果你本来基础好又能不断努力,那你肯定能比别人更早取得成功。
——Wannstehtihrauf?——______Viertelnachsechs.
Wesuggestyoulookaroundthecomputerstoreforawhile,andoneofourstaffwillattendtoyou______.
最新回复
(
0
)