首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵 其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵. 证明:矩阵Q可逆的充分必要条件是αTAα-1≠b.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵 其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵. 证明:矩阵Q可逆的充分必要条件是αTAα-1≠b.
admin
2016-07-22
94
问题
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵
其中A
*
是矩阵A的伴随矩阵,E为n阶单位矩阵.
证明:矩阵Q可逆的充分必要条件是α
T
Aα
-1
≠b.
选项
答案
由(1)得|P|.|Q|=|PQ|=|A|
2
(b-α
T
A
-1
α)[*]|Q|=|A|(b-α
T
A
-1
α)Q可逆[*]α
T
A
-1
α≠b.
解析
转载请注明原文地址:https://kaotiyun.com/show/Lvw4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续可导,f(x)在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0,证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);(2)在(a,b)内至少存在一点η(η≠
解方程(3x2+2)y"=6xy’,已知其解与ex-1(x→0)为等价无穷小.
求极限
设z=f(x,y)二阶连续可偏导,=2,且f(x,0)=1,f’y(x,0)=x,求f(x,y).
设φ(u,v,w)有一阶连续的偏导数,z=z(x,y)是由φ(bz-cy,cx-az,ay-bx)=0确定的函数,求
设A,B均为n阶方阵,|A|=2,|B|=-3,则|A-1B*-A*B-1|=__________.
证明函数u=f(x,y,z)=在点(0,0,0)偏导数的存在性及在该点处沿方向l0=(cosα,cosβ,cosγ)的方向导数
改变积分的积分次序
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
设fn(x)=1-(1-cosx)n,求证:对于任意Ⅱ:整数n,fn(x)=中仅有一根;
随机试题
转向器的功用是将转向盘的转动变为齿条轴的直线运动或转向摇臂的摆动,()传动速度,()转向力矩的传动方向。
外来文化包括
以下对审计工作底稿的描述中,不恰当的是()
女性,35岁,风心病二尖瓣狭窄2年,近2周工作劳累,2天来活动时胸闷憋气较前加重,夜间阵发性呼吸困难,遂住院治疗。2分钟前突然咯大量鲜血。咯血的原因是
女,55岁,月经紊乱,周期长,8天/2~3个月,量多伴血块,对此病人的处理方案是
在一起抢劫伤人案件的侦查过程中,被害人提出要求被告人赔偿医药费的请求。对此,公安机关正确的做法是()
以下各项中,()是对进口废物管理正确的表述。
货币市场的一股特征是()。
根据马克思主义基本原理,决定道德发展状况的根本因素是()。
根据观察情境,教育观察可分为()
最新回复
(
0
)