首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵 其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵. 证明:矩阵Q可逆的充分必要条件是αTAα-1≠b.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵 其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵. 证明:矩阵Q可逆的充分必要条件是αTAα-1≠b.
admin
2016-07-22
71
问题
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵
其中A
*
是矩阵A的伴随矩阵,E为n阶单位矩阵.
证明:矩阵Q可逆的充分必要条件是α
T
Aα
-1
≠b.
选项
答案
由(1)得|P|.|Q|=|PQ|=|A|
2
(b-α
T
A
-1
α)[*]|Q|=|A|(b-α
T
A
-1
α)Q可逆[*]α
T
A
-1
α≠b.
解析
转载请注明原文地址:https://kaotiyun.com/show/Lvw4777K
0
考研数学一
相关试题推荐
设f(x)二阶连续可导且满足f"(x)+f’2(x)-2x,且f’(0)=0,则().
设A为三阶实对称矩阵,且满足条件A2+2A=O.已知r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
设a>0,b>0都是常数,则2=__________.
计算二次积分I=∫-∞+∞∫-∞+∞min{x,y}dxdy.
设奇函数f(x)在[-1,1]上二阶可导,且f(1)=l,证明:(1)存在ξ∈(0,1),使得f’(ξ)=1;(2)存在η∈(-1,1),使得f"(η)+f’(η)=1.
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3,经正交变换x=Py化成f=y22+2y32,P是3阶正交矩阵,试求常数α、β.
设曲线(正整数n≥1)在第一象限与坐标轴围成图形的面积为I(n),证明:
已知A,B,A+-1,A-1+B-1均为n阶可逆阵,则(A-1+B-1)-1等于()
设f(x)∈C[-π,π],且F(x)=+∫-ππf(x)sinxdx,求f(x).
当x→0时,1-cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值.
随机试题
集体合同的时间效力的表现形式有()
下列关于NHL的病理类型中,哪些属于中度恶性?
(2007年第75题)下列属于退行性变的疾病是
下列行为中,属于无效民事行为的有()。
人们常说“教学有法,教无定法”,此话反映了教师劳动的()。(2014·河南)
Wherearetheynow?
Electronicmailhasbecomeanextremelyimportantandpopularmeansofcommunication.Theconvenienceandefficiencyofelec
JudgingbythewildlycheeringaudienceattheorgyofconsumerismthatwasOprahWinfrey’s"UltimateFavouriteThings"show,A
A、Theykeepallthepropertyoftheorganization.B、Theyareresponsibleformostofthebusinessdebts.C、Theytakemorerespon
Postgraduatedilemmas[A]Decidingwhetherornottobecomeapostgraduatecanbeadaunting(令人畏缩的)prospect.Evenifyouaresure
最新回复
(
0
)