首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αM,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关。证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设α1,α2,…,αM,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关。证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
admin
2018-04-15
41
问题
设α
1
,α
2
,…,α
M
,β
1
,β
2
,…,β
n
线性无关,而向量组α
1
,α
2
,…,α
m
,γ线性相关。证明:向量γ可由向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性表示.
选项
答案
因为向量组α
1
,α
2
,…,α
M
,β
1
,β
2
,…,β
n
线性无关,所以向量组α
1
,α
2
,…,α
m
也线性无关,又向量组α
1
,α
2
,…,α
m
,γ线性相关,所以向量γ可由向量组α
1
,α
2
,…,α
m
线性表示,从而γ可由向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/M4r4777K
0
考研数学一
相关试题推荐
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关。
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明存在c∈(0,1),使得f(c)=;
设二重积分I=(x2+y2)dxdy,其中D是由曲线x2+y2=2x所围第一象限的平面区域,则I=________。
已知三阶矩阵A的特征值为0,±1,则下列结论中不正确的是()
对数螺线ρ=eθ在点(ρ,θ)=()处切线的直角坐标方程为__________。
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
设,若存在秩大于1的三阶矩阵B使得BA=0,则An=________.
设二元函数f(x,y)在单位圆区域x2+y2≤1上有连续的偏导数,且在单位圆的边界曲线上取值为零,f(0,0)=1.求极限,其中区域。为圆环域ε2≤x2+y2≤1.
若y=(1+x2)2一,y=(1+x2)2+是微分方程y’+p(x)y=q(x)的两个解,则q(x)=___________.
设f(x)=x2sinx,求f(n)(0).
随机试题
关于承运人责任的归责原则,《汉堡规则》的规定为()
简述行政发展的特点。
如果=ρ(un>0,n=1,2,…),则级数un的收敛条件是()
Doyoufindgettingupinthemorningsodifficultthatit’spainful?This【C1】______calledlaziness,butDr.Kleitmanhasanew
A.生发上皮B.鳞状上皮化生C.高柱状腺上皮D.有纤毛的高柱状上皮E.复层鳞状上皮宫颈管黏膜是
面呈青色不属于
护理理论的四个基本概念是
下列各项中,符合《支付结算办法》规定的有()。
活动性原则源自于()的“做中学”。
如果在鱼缸里装有电动通风器,鱼缸的水中就有适度的氧气。因此,由于张文的鱼缸中没有安装电动通风器,他的鱼缸的水中一定没有适度的氧气。没有适度的氧气,鱼就不能生存,因此,张文鱼缸中的鱼不能生存。上述推理中存在的错误也类似地出现在哪项中?
最新回复
(
0
)