首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[-1,2,2,1]T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[-1,2,2,1]T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由
admin
2020-03-10
88
问题
设四元齐次线性方程组(Ⅰ)为
又已知某齐次线性方程组(Ⅱ)的通解为k
1
[0,1,1,0]
T
+k
2
[-1,2,2,1]
T
.
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)线性方程组(Ⅰ)的解为[*],得所求基础解系 ξ
1
=[0,0,1,0]
T
,ξ
2
=[-1,1,0,1]
T
. (2)将方程组(Ⅱ)的通解代入方程组(Ⅰ),得[*]=>k
1
=-k
2
.当k
1
=-k
2
≠0时,方程组(Ⅰ)和(Ⅱ)有非零公共解,且为 x=-k
2
[0,1,1,0]
T
+k
2
[-1,2,2,1]
T
=k
2
[-1,1,1,1]
T
=k[-1,1,1,1]
T
,其中k为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/MAD4777K
0
考研数学三
相关试题推荐
设f(x)可导且则当△x→0时,f(x)在x0点处的微分dy是()
A、 B、 C、 D、 C设x=t6,则dx=6t5dt.所以
设f(x)为不恒等于零的奇函数,且f’(0)存在,则函数g(x)=f(x)/x
设有向量组α1=(1,一1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,一2,2,0),α5=(2,1,5,10).则该向量组的极大无关组是
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’(x)≠0,x=x(y)是y=y(x)的反函数。(Ⅰ)试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,的解。
差分方程yt+1-yt=t﹒2t的通解为_____________________。
设两曲线与在(x,y0)处有公切线,求这两曲线与x轴围成的平面图形绕x轴旋转一周而成旋转体体积V。
由曲线y=和直线y=x及y=4x在第一象限中围成的平面图形的面积为__________。
设{an)与{bn}为两个数列,下列说法正确的是().
设有两个数列{an},{bn},若,则()
随机试题
试述太平天国农民战争的意义。
阅读《答李翊书》中的一段文字,然后回答问题。气,水也;言,浮物也。水大而物之浮者大小毕浮。气之与言犹是也,气盛则言之短长与声之高下者皆宜。……“气”和“言”指的是什么?
关于犯罪嫌疑人、被告人逃匿、死亡案件违法所得的没收程序,下列哪一说法是正确的?(2012年试卷2第38题)
以下对爆破作业描述不正确的是()。(1)雷雨季节宜采用电雷管起爆法起爆。(2)炸药反应不完全时,不会引起有毒气体含量增加。(3)同一爆破网络应使用同厂、同批、同型号的电雷管。(4)处理盲炮时进行安全警戒。
行业的成长实际上是指( )。
企业会计方法和程序前后各期( )。
某公司正处于快速发展时期,急需高素质人才加盟,为此人力资源部门和多家猎头公司签订了合作协议,开始进行大张旗鼓的人才招募选拔。该公司人才招募选拔的流程是:猎头公司推荐候选人,候选人资料经人力资源部经理筛选后交总经理审阅,由总经理决定是否面试,再由人力资源部和
根据《企业所得税法》及其实施条例的有关规定,不得提取折旧的固定资产是()。
出境旅游领队带领旅游团入中国境的服务包括()
(2015·河南)既是课程标准的具体化,也是师生进行教学的主要依据的是教科书。()
最新回复
(
0
)