首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P—1AP为对角矩阵.
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P—1AP为对角矩阵.
admin
2016-04-11
47
问题
设n阶矩阵
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使P
—1
AP为对角矩阵.
选项
答案
(1)1° 当b≠0时,|λE一A|=[*]=[λ一1一(n一1)b][λ一(1—b)]
n—1
,故A的特征值为λ
1
=1+(n一1)6,λ
2
=…=λ
n
=1—b. 对于λ
1
=1+(n一1)b,设对应的一个特征向量为ξ
1
,则 [*]ξ
1
=[1+(n一1)ξ
1
解得ξ
1
=(1,1,…,1)
T
,所以,属于λ
1
的全部特征向量为 kξ
1
=k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1—b,解齐次线性方程组[(1—b)E一A]x=0.由 [*] 解得基础解系为ξ
2
=(1,一1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
n
=(1,0,0,…,一1)
T
.故属于λ
2
=…=ξ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
为不全为零的任意常数. 2° 当b=0时,A=E,A的特征值为λ
1
=λ
2
=…=λ
n
=1,任意n维非零列向量均是特征向量. (2)1° 当b≠0时,A有n个线性无关的特征向量,令矩阵P=[ξ
1
ξ
2
… ξ
n
],则有 P
—1
AP=diag(1+(n一1)b,1—b,…,1—b). 2。 当b=0时,A=E,对任意n阶可逆矩阵P,均有P
—1
AP=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/MAw4777K
0
考研数学一
相关试题推荐
设,求a,b的值。
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:存在ξ∈(0,1),使得
设f(x)在[0,+∞)上可导,f(0)=0,且f(x)的反函数为g(x),若∫0f(x)g(t)dt=∫0f(x)tsin2t/(sint+cost)dt,求f(π/2)。
设在点处,函数f(x,y)=x2+(y-1)2(x≠0)在条件x2/a2+y2+b2=1(a>0,b<0)下取得最小值,求a,b的值。
设(a>0),A是3阶非零矩阵,且ABT=0,则方程组Ax=0的通解为()
已知f(x)的定义域为(0,+∞),且满足xf(x)=1+∫0xu2f(u)du。求f(x)
设n维实列向量α满足αTα=2,A,B,E均为n阶矩阵,且A(E~2ααT)=B,则()
已知f(x)在(-∞,+∞)内连续,且对任意x有f(x)=f(x2),f(1)=a,试求f(x).
设χOy平面上有正方形D={(χ,y)|0≤χ≤1,0≤y≤1)及直线l:χ+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0χS(t)dt(χ≥0).
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)],试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
随机试题
HarlanCobenbelievesthatifyou’reawriter,you’llfindthetime;andthatifyoucan’tfindthetime,thenwritingisn’tap
塑料件表面不允许有浇口疤痕时,应选用_________形式
在经济法的基本原则中,调制绩效原则更强调【】
所谓保险公司,是指依法设立的专门从事保险业务的公司,对这一概念的理解不正确的一项是()。
(2014年)下列统计变量中,属于定量变量的是()。
某企业现着手编制2017年6月份的现金收支计划,预计2017年6月初现金余额为8000元,月初应收账款4000元,预计月内可收回80%;本月销货50000元,预计月内收款比例为50%;本月采购材料8000元,预计月内付款70%;月初应付账款余额5
建筑石膏的特性之一是()
思想品德课是我国德育的主要途径。()
虽然用椰子油制造的不含奶的咖啡伴侣每勺含2克饱和脂肪,或者说它所含的饱和脂肪比同样数量的牛奶高7倍,且这种咖啡伴侣通常不含胆固醇,但是这样一勺含2克饱和脂肪的咖啡伴侣比含有2毫克胆固醇的同样数量的一勺牛奶会使消费者血液中的胆固醇含量增高更多。以下哪项如果
Oncetherewasamanwhohadtwochildren,aboyandagirl.Theboywasgoodlooking,butthegirlwasnot.Onedaytheyfound
最新回复
(
0
)