首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证: (I)存在,使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1。
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证: (I)存在,使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1。
admin
2019-05-11
89
问题
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,
试证:
(I)存在
,使f(η)=η;
(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1。
选项
答案
(I)构造函数F(x)=f(x)一x,则F(x)在区间[0,1]上连续,在(0,1)内可导,且[*],F(1)=f(1)一1=0—1=一1<0, 所以由介值定理得,存在一点[*],使得F(η)=f(η)一η=0,即存在一点[*]使得f(η)=η,原命题得证。 (Ⅱ)令 f’(x)一λ[f(x)一x]一1=0, 解微分方程得f(x)=x+Ce
λx
,即e
-λx
(f(x)一x)=C,令 G(x)=e
-λx
[f(x)一x]。 因为 G(0)=e
0
(f(0)一0)=0,G(η)=e
-λη
(f(η)一η)=0, 所以,在(0,η)上由罗尔定理知,必然存在点ξ∈(0,η),使得G’(ξ)=0,即 G’(ξ)=一λe
-λξ
(f(ξ)一ξ)+e
-λξ
(f’(ξ)一1) =e
-λξ
(一λf(ξ)+λξ+f’(ξ)一1)=0, 即 f’(ξ)一λ[f(ξ)一ξ]=1。
解析
转载请注明原文地址:https://kaotiyun.com/show/MIJ4777K
0
考研数学三
相关试题推荐
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得P{|-μ|≥2}≤______.
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=.(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设k为常数,方程kx-+1=0在(0,+∞)内恰有一根,求k的取值范围.
设=c(≠0),求n,c的值.
设幂级数an(x-2)n在x=6处条件收敛,则幂级数(x-2)2n的收敛半径为().
设f(x)为连续函数,计算+yf(x2+y2)]dxdy,其中D是由y=x3,y=1,x=-1围成的区域.
(2007年)如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上图形分别是直径为2的上、下半圆周,设F(x)=∫0xf(t)dt则下列结论正确的是()
[2002年]设函数f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使
随机试题
欲测过磷酸钙中有效磷的含量时,制备分析试液应选用的抽取剂是()。
差别待遇________
总角之宴,言笑晏晏。信誓旦旦,不思其反。
北京的颐和园和北海公园属于()
EvenasAmericanshavebeengainingweight,theyhavecuttheiraveragefatintakefrom36to34percentoftheirtotaldietsin
女,28岁,反复哮喘发作13年,平时常有夜间憋醒,肺内有哮鸣音存在。此次因重度哮喘急性发作而入院治疗,好转出院时应长期应用
常伴有AFP升高的卵巢肿瘤是
某城镇现有人口8万人,设计年限内预期发展到10万人,用水普及率以92%来计,取居民生活用水定额为150L/(人.d)。通过调查和实测,工业企业和公共建筑用水量为15000m3/d,管网漏损水量按上述用水的10%来考虑,未预见水量按前述总水量的8%来考虑,
对长期投资的评估,一般进行的程序包括()。
Everygrouphasaculture,howeveruncivilizeditmayseemtous.Totheprofessionalanthropologist,thereisnointrinsicsupe
最新回复
(
0
)