首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,X是2阶方阵. (Ⅰ)求满足AX一XA=O的所有X; (Ⅱ)方程AX一XA=E,其中E是2阶单位阵.问方程是否有解?若有解,求满足方程的所有X;若无解,说明理由.
设A=,X是2阶方阵. (Ⅰ)求满足AX一XA=O的所有X; (Ⅱ)方程AX一XA=E,其中E是2阶单位阵.问方程是否有解?若有解,求满足方程的所有X;若无解,说明理由.
admin
2018-03-30
74
问题
设A=
,X是2阶方阵.
(Ⅰ)求满足AX一XA=O的所有X;
(Ⅱ)方程AX一XA=E,其中E是2阶单位阵.问方程是否有解?若有解,求满足方程的所有X;若无解,说明理由.
选项
答案
(Ⅰ)用待定元素法求X.设X=[*],代入方程,得 [*] 取x
3
=2k
1
,得x
2
=一k
1
.取x
4
=k
2
,得x
1
=k
2
. 故X=[*],其中k
1
,k
2
是任意常数. (Ⅱ)法一 AX一X4=E,设X=[*],由(Ⅰ)得 [*] 显然方程组中第1个和第4个方程相互矛盾,故矩阵方程AX一XA=E无解. 法二 由(Ⅰ)易知tr(AX)=tr(XA),故 tr(AX一XA)=tr(AX)一tr(XA)=0≠tr(E)=2. 故矩阵方程AX一XA=E无解.
解析
转载请注明原文地址:https://kaotiyun.com/show/mwX4777K
0
考研数学三
相关试题推荐
证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).
设A、B都是n阶方阵,且A2=E,B2=E,∣A∣+∣B∣=0,证明:∣A+B∣=0.
设向量组(Ⅰ):α1,α2,…,αr线性无关,且(Ⅰ)可由(Ⅱ):β1,β2,…,βs线性表示.证明:在(Ⅱ)中至少存在一个向量βj,使得向量组βj,α2,…,αr线性无关.
设曲线y=f(x),其中f(x)是可导函数,且f(x)>0.已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕z轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线的方程.
设D是由曲线,直线x=a(a>0)及x轴所围成的平面图形,Vx,Vy分别是D绕x轴,y轴旋转一周所得旋转体的体积.若Vy=10Vx,求a的值.
设(X,Y)的联合密度函数为f(x,y)=(Ⅰ)求常数k;(Ⅱ)求X的边缘密度;(Ⅲ)求当X=x(0≤x≤)下Y的条件密度函数(y|x).
计算二重积分|x2+y2一1|dσ,其中D={(x,y)|0≤x,y≤1).
一一3y=e-x的通解为__________.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)-3f(1-sinx)=8x+α(z),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
微分方程(1-x2)y-xyˊ=0满足初值条件y(1)=1的特解是_________.
随机试题
A、伤寒B、中毒型菌痢C、流行性乙型脑炎D、急性病毒性肝炎E、流行性出血热血白细胞增多,异型淋巴细胞比例常高于10%,多见于
A.淋巴转移和种植B.血行转移和淋巴转移C.直接蔓延和种植D.直接蔓延和淋巴转移E.血行转移绒毛膜癌主要播散的方式为
对于法定检验的进口商品,如果合同中约定由买卖双方协商确定的国外检验机构进行检验,报检时应在报检单上注明,检验检疫机构不再进行检验。( )
下列进口商品的检验鉴定必须在卸货口岸进行的有( )。
贷款审查是提高银行贷款资产安全性的重要环节,发放公司贷款时,要特别注意的有()
正面教育、积极疏导原则
虚拟企业是当市场出现新机遇时,具有不同资源与优势的企业为了共同开拓市场,共同对付其他的竞争者而组织的,建立在信息网络基础上的共享技术与信息、分担费用、联合开发的、互利的企业联盟体。根据上述定义,下列属于虚拟企业的是:
“太极图”是中华文化的瑰宝,它是由黑白两个鱼形纹组成的圆形图案,俗称“阴阳图”,该图看似简单,却包含着丰富的哲学意蕴。其内涵主要有()
得罪了你就得罪了你。
Themotherdidn’tknowwho______forthebrokenglass.
最新回复
(
0
)