首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:与基础解系等价的线性无关的向量组也是基础解系.
证明:与基础解系等价的线性无关的向量组也是基础解系.
admin
2017-05-10
46
问题
证明:与基础解系等价的线性无关的向量组也是基础解系.
选项
答案
设Ax=0的基础解系是α
1
,α
2
,…,α
t
.若β
1
β
2
,…,β
s
线性无关,β
1
β
2
,…,β
s
与α
1
,α
2
,…,α
t
等价. 由于β
j
(j=1,2,…,s)可以由α
1
,α
2
,…,α
t
线性表示,而α
i
(i=1,…,t)是Ax=0的解,所以β
1
(j=1,2,…,s)是Ax=0的解. 因为α
1
,α
2
,…,α
t
线性无关,秩r(α
1
,α
2
,…,α
t
)=t,又α
1
,α
2
,…,α
t
,与β
1
β
2
,…,β
s
等价,所以r(β
1
β
2
,…,β
s
)=r(α
1
,α
2
,…,α
t
)=t.又因β
1
β
2
,…,β
s
线性无关,故s=t. 因此β
1
β
2
,…,β
t
是Ax=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/MPH4777K
0
考研数学三
相关试题推荐
证明级数在(0,+∞)上收敛且一致收敛.
A、 B、 C、 D、 D
设3阶交对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.B=A5-4A3+E,其中E为3阶单位矩阵求矩阵B.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的矩估计量;
设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量;若生产函数为Q=2x1αx2β,其中αβ为正常数,且α+β=1.假设两种要素的价格分别为P1和p2,试问:当产出量为12时,两要素各投入多少可以使得投入总费用最小?
曲线y=x+sin2x在点处的切线方程是_____.
已知曲面z=4一x2一y2上点P处的切平面平行于平面2x+2y+z一1=0,则点P的坐标是().
设F(x)在闭区间[0,c]上连续,其导数F’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:F(a+b)≤F(a)+F(b),其中常数,a,b满足条件0≤a≤b≤a+b≤c.
设A,B皆为n阶矩阵,则下列结论正确的是().
随机试题
对出血坏死性胰腺炎最具诊断价值的是
加工贸易企业应在下列环节向海关如实申报单耗标准:
下列关于贷款损失准备金计提原则的说法中,正确的是()。
小张毕业后进入了一家广告公司,凭着过硬的专业素质和不懈的努力很快成为公司的业务骨干,并被提拔为部门经理。但让公司领导略感意外的是,小张升为主管后虽然依然工作勤恳,但他所管理的部门的整体业绩反而较先前有所下降。通过私下询问,员工们普遍反映小张对下属缺乏适当的
阅读下面的短文,完成问题。矛盾普遍存在于客观世界中,模糊性亦寓于万物运动之中。鸡蛋可以孵鸡,当小鸡未啄出蛋壳时,总不能说它仍是蛋,亦不可称之为鸡,突变的事物会呈现短暂的模糊性,而另一些事物放到漫长的时间里考察也会使模糊性突出显现。铅块上
简述牙排列的颊舌向的倾斜规律。
普通话语音系统中,有字音节约有_____个。
国家性质是国家制度的()
以下关于数据组织的描述中,错误的是()。
Accordingtothehostess,whatisthereasonforincreasedcompetitioninclothingindustry?
最新回复
(
0
)