首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x一1)y"一(2x+1)y’+2y=0的两个解.若u(一1)=e,u(0)=一1,求u(x),并写出该微分方程的通解.
已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x一1)y"一(2x+1)y’+2y=0的两个解.若u(一1)=e,u(0)=一1,求u(x),并写出该微分方程的通解.
admin
2017-04-24
125
问题
已知y
1
(x)=e
x
,y
2
(x)=u(x)e
x
是二阶微分方程(2x一1)y"一(2x+1)y’+2y=0的两个解.若u(一1)=e,u(0)=一1,求u(x),并写出该微分方程的通解.
选项
答案
将y
2
(x)=u(x)e
x
代入原方程并整理得 (2x 一1)u"+(2x一3)u’=0. 令u’(x)=z,则 (2x一1)z’+ (2x一3)z=0, 解得 z=[*] (2x一1)e
一x
, 从而 u(x)=[*](2x 一 1)e
一x
dx=[*][(2x一1)e
一x
+2e
一x
] +[*]. 由u(一1)= e,u(0)=一1,得[*]=0,所以u(x)=一(2x+1)e
一x
. 所以原微分方程的通解为 y=C
1
e
x
—C
2
(2x+1).
解析
转载请注明原文地址:https://kaotiyun.com/show/MVt4777K
0
考研数学二
相关试题推荐
[*]
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;证明:|f’(x)|≤2a+b/2.
∫xarcsinxdx.
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
求z=x2+12xy+2y2在区域4x2+y2≤25上的最值.
“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
若x→0时,(1-ax2)1/4-1与xsinx的等价无穷小,则a=________.
求极限.
函数的无穷间断点数为
随机试题
吩噻嗪类药物氧化显色反应中常用的氧化剂不包括
为避免混杂因素影响调查结果,在不同年龄人群调查中,往往采取以下抽样调查方法中的哪一种
患者,女,48岁。胃脘隐隐灼痛,似饥而不欲食,口燥咽干,五心烦热,消瘦乏力,口渴思饮,大便干结,舌红少津,脉细数。其证属
下列矿物中哪一种对膨胀土的胀缩性影响最大?()
崩塌滑坡危险区和泥石流易发区的范围,由()划定。
下列股利政策不利于股东安排收入与支出的有()。
据说泰山是古代名匠鲁班的弟子,天资聪颖,心灵手巧,干活总是______,但往往耽误了鲁班的事,于是惹恼了鲁班,被撵出了“班门”。填入划横线部分最恰当的一项是:
A、 B、 C、 D、 D
Clothesplayacriticalpartintheconclusionswereachbyprovidingcluestowhopeopleare,whotheyarenot,andwhotheywo
InternetofThingsEraIsComingA)FrommeatthermometersmonitoredwithasmartphonetoWi-Fi-equippeddogcollars,devicesan
最新回复
(
0
)