首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A,B均是n阶矩阵,且AB=A+B证明:A—E可逆,并求(A—E)-1.
A,B均是n阶矩阵,且AB=A+B证明:A—E可逆,并求(A—E)-1.
admin
2020-03-16
113
问题
A,B均是n阶矩阵,且AB=A+B证明:A—E可逆,并求(A—E)
-1
.
选项
答案
因AB=A+B,即AB-A—B=0,AB一A—B+E=E,A(B—E)一(B一E)=E,即 (A—E)(B—E)=E,故A—E可逆,且(A—E)
-1
=B—E.
解析
转载请注明原文地址:https://kaotiyun.com/show/MdA4777K
0
考研数学二
相关试题推荐
[2009年](I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)一f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f′(x)=
[2007年]已知函数f(u)具有二阶导数,且f'(0)=l,函数y=y(x)由方程y一xey-1=1所确定.设z=f(lny—sinx),求.
[2011年](I)证明对任意的正整数,都有成立;(Ⅱ)设an=1+一lnn(n=1,2,…),证明数列{an}收敛.
[2014年]设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:∫aa-∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
设A=E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
已知n阶矩阵A满足A3=2E,B=A2-2A+2E,求(B一E)-1.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求方程组AX=0的通解.
求微分方程=1+x+y+xy的通解.
设。已知线性方程组Ax=b存在两个不同的解。求λ,a;
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
随机试题
焊条的作用有哪些?
Amongallthemalignancies,lungcanceristhebiggestkiller;morethan100000Americansdieofthedisease.Givingupsmoking
医学伦理学的特征之一是
A.直接法B.间接法C.夹心法D.补体结合法E.双标记法用FITC和RB200标记不同的抗体,对同一标本做荧光染色为
以下哪项属于骨折的全身表现?()
下面有关风险产生的因素中,( )是属于组织风险。
假设在20个季度内,股票市场出现上扬的季度数有12个,其余8个季度则出现下跌。在股票市场上扬的季度中,择时损益为正值的季度数有10个;在股票市场出现下跌的季度中,择时损益为正值的季度数为6个,该基金的成功概率为( )。
2×13年12月10日,甲公司与乙公司签订了一项租赁协议,将一栋经营管理用写字楼出租给乙公司,租赁期为3年,租赁期开始日为2×13年12月31日,年租金为600万元,于次年起每年年初收取。相关资料如下:(1)2×13年12月31日,甲公司将该写字楼停止自
分管的领导让你变通处理一笔现金往来的业务。你怎么办?
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。某学校初中二年级五班的物理老师要求学生两人一组制作一份物理课件。小曾与小张自愿组合,他们制作完成的第一章后三节内容见文
最新回复
(
0
)