首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为正交矩阵,则下列矩阵中不属于正交矩阵的是( )
设A为正交矩阵,则下列矩阵中不属于正交矩阵的是( )
admin
2019-03-14
51
问题
设A为正交矩阵,则下列矩阵中不属于正交矩阵的是( )
选项
A、A
T
。
B、A
2
。
C、A
*
。
D、2A。
答案
D
解析
因A为正交矩阵,所以AA
T
=A
T
A=E,且|A|
2
=1。而(2A)(2A)
T
=4AA
T
=4E,故2A不为正交矩阵。所以选D。
事实上,由A
T
(A
T
)
T
=A
T
A=E,(A
T
)
T
A
T
=AA
T
=E,可知A
T
为正交矩阵。
由A
2
(A
2
)
T
=A(AA
T
)A
T
=AA
T
=E,(A
2
)
T
A
2
=A
T
(A
T
A)A=A
T
A=E,可知A
2
为正交矩阵。
由A
*
=|A|A
-1
=|A|A
T
,可得
A
*
(A
*
)
T
=|A|A
T
(|A|A)=|A|
2
A
T
A=|A|
2
E=E,
(A
*
)
T
A
*
=(|A| A)|A|A
T
=|A|
2
AA
T
=|A|
2
E=E,
故A
*
为正交矩阵。
转载请注明原文地址:https://kaotiyun.com/show/Mdj4777K
0
考研数学二
相关试题推荐
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(A)=g(a),f(bb)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等;(2)举一个2阶方阵的例子说明(1)的逆命题不成立;(3)当A,B均为实对称矩阵时,试证(1)的逆命题成立.
求微分方程y"(x+y’2)=y’满足初始条件y(1)=y’(1)=1的特解.
设f(x)=则在点x=1处函数f(x)
y=2x的麦克劳林公式中xn项的系数是________.
将极坐标变换后的二重积分f(rcosθ,rsinθ)rdrdθ的如下累次积分交换积分顺序:其中F(r,θ)=f(reosθ,rsinθ)r.
设a(x)=∫05xsint/tdt,β(x)=∫0sinx(1+t)1/tdt,则当x→0时,α(x)是β(x)的()
随机试题
Afamousteacherwasspeakingtothestudentsatourschool.Hebeganhislessonbyholdingupa¥100bill.Thenhesaidtothe
属于组织适应性改变的是()
患者,男性,27岁,高空坠落致脊柱骨折伴脊髓损伤,查体示:双上肢呈屈曲状态,可完成屈肘和腕背伸动作,不能伸肘,双侧中指以下感觉丧失,其损伤平面为
男性,28岁,于高处取物时不慎摔下,骑跨于铁栏杆上,伤后尿道出血,会阴部及阴囊肿胀,最可能诊断为
工业用地年租制的租用年限是()。
假设通货膨胀率为2%,名义利率为10%,则实际利率为()。
在国内航空运输中,对托运行李的赔偿责任限额,承运人按照每千克()元人民币承担责任。
教育的本质是___________。
TheresponsetotheconceitswasnotwarmenoughsoIdecidedtopostponebookingtickets______laterintheyear.
A、Anyonewhoisill.B、Womenwhoneedtheknowledgeoflaw.C、Bothmenandwomenwhohaveproblemsatwork.D、Femalestudentswh
最新回复
(
0
)