首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为正交矩阵,则下列矩阵中不属于正交矩阵的是( )
设A为正交矩阵,则下列矩阵中不属于正交矩阵的是( )
admin
2019-03-14
46
问题
设A为正交矩阵,则下列矩阵中不属于正交矩阵的是( )
选项
A、A
T
。
B、A
2
。
C、A
*
。
D、2A。
答案
D
解析
因A为正交矩阵,所以AA
T
=A
T
A=E,且|A|
2
=1。而(2A)(2A)
T
=4AA
T
=4E,故2A不为正交矩阵。所以选D。
事实上,由A
T
(A
T
)
T
=A
T
A=E,(A
T
)
T
A
T
=AA
T
=E,可知A
T
为正交矩阵。
由A
2
(A
2
)
T
=A(AA
T
)A
T
=AA
T
=E,(A
2
)
T
A
2
=A
T
(A
T
A)A=A
T
A=E,可知A
2
为正交矩阵。
由A
*
=|A|A
-1
=|A|A
T
,可得
A
*
(A
*
)
T
=|A|A
T
(|A|A)=|A|
2
A
T
A=|A|
2
E=E,
(A
*
)
T
A
*
=(|A| A)|A|A
T
=|A|
2
AA
T
=|A|
2
E=E,
故A
*
为正交矩阵。
转载请注明原文地址:https://kaotiyun.com/show/Mdj4777K
0
考研数学二
相关试题推荐
设A=(α1,α2,α3),B=(β1,β2,β3)都是3阶矩阵.规定3阶矩阵C=证明C可逆的充分必要条件是A,B都可逆.
A和B都是n阶矩阵.给出下列条件①A是数量矩阵.②A和B都可逆.③(A+B)2=A2+2AB+B2.④AB=cE.⑤(AB)2=A2B2.则其中可推出AB=BA的有()
设齐次方程组(Ⅰ)有一个基础解系β=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
已知(1,0,2)T,(-1,4,b)T构成齐次线性方程组的一个基础解系,求a,b,s,t.
若f’’(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内()
设f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分必要条件是()
计算下列反常积分(广义积分)。
设随机变量X1,X2,…,Xn(n>1)相互独立同分布,且期望均为μ,方差均为σ2(σ2>0),令的相关系数ρ.
若曲线y=x2+ax+b和2y=一1+xy3在点(1,一1)处相切,其中a,b是常数,则
设当x→x0时,α(x),β(x)都是无穷小(β(x)≠0),则当x→x0时,下列表达式中不一定为无穷小的是()
随机试题
下列关于缺铁性贫血的叙述,错误的是A.血清运铁蛋白饱和度<15%B.红细胞中央淡染区扩大C.铁蛋白<12μg/LD.血清总铁结合力减低E.血清铁降低
患者女,62岁。2年前不明原因颜面部及双下肢水肿,在当地疑为肾炎、冠心病予对症治疗无效,且症状渐加重,伴活动后心悸、气短、乏力、食欲减退、腹胀。病史中有情绪低落、反应迟钝、怕冷、脱毛表现。既往无高血压、心绞痛病史。入院查:体温36.4℃,血压130/70m
确诊侵蚀性葡萄胎和绒癌主要取决于
下列叙述不正确的是
A.全身单核巨噬细胞系统增生性反应B.正常肠黏膜上有孤立小脓肿及溃疡C.肠黏膜急性弥漫性渗出性炎症D.肠黏膜弥漫水肿及肠壁增厚E.小肠黏膜充血肿胀、松弛,表面有灰白糠皮状薄膜伤寒病变特点是
某预应力混凝土T梁桥遭受火灾后,开展检测评定,现场混凝土强度检除采用回弹外,还需进行取芯检测,最后修正得到混凝土强度,请根据相关条件回答下列问题。最后结构或构件混凝土强度应采用检测批的()。
某大型施工机械原值35万元,折旧年限为5年,预计年平均工作250个台班,预计残值率4%。该机械年实际工作280个台班,用工作量法计算的年折旧额为()元。
对看涨期权而言,若市场价格低于协定价格,期权的买方将放弃执行期权,为虚值期权。()
[2013年1月]△ABC的边长分别为a、b、c,则△ABC为直角三角形。(1)(c2一a2一b2)(a2一b2)=0;(2)△ABC的面积为。
A、B、C、D、E五个选项为判断结果,请选择一项符合试题要求的判断。A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和(2)单独都不充分,但条件(1)和(2)联合起来充分。D.条件(1)充分,条件(2)
最新回复
(
0
)