首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β1为三维列向量组,且α1,α2与β1,β2都线性无关. (1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (2)设,求出可由两组向量同时线性表示的向量.
设α1,α2,β1,β1为三维列向量组,且α1,α2与β1,β2都线性无关. (1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (2)设,求出可由两组向量同时线性表示的向量.
admin
2018-04-18
93
问题
设α
1
,α
2
,β
1
,β
1
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关.
(1)证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示;
(2)设
,求出可由两组向量同时线性表示的向量.
选项
答案
(1)因为α
1
,α
2
,β
1
,β
2
线性相关,所以存在不全为零的常数k
1
,k
2
,l
1
,l
2
,使得 k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0,或k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
. 令γ=k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
因为α
1
,α
2
与β
1
,β
2
都线性无关,所以k
1
,k
2
及l
1
,l
2
都不全为零,所以γ≠0. (2)令k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0, [*] 所以γ=kα
1
-3kα
2
=-kβ
1
+0β
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mjk4777K
0
考研数学二
相关试题推荐
设n阶方程A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…γn),记向量组(I):α1,α2,…,αn,(Ⅱ):β1,β2,…,βn,(Ⅲ):γ1,γ2,…,γn,如果向量组(Ⅲ)线性相关,则().
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
设A,B均为三阶矩阵,E是三阶单位矩阵.已知AB=2A+B.B=则(A-E)-1=_______.
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
矩阵相似的充分必要条件为
试确定参数a,b及特征向量ξ所对应的特征值;
随机试题
判断组织兴奋性高低最常用的简便指标是()
Nowletuslookathowweread.Whenwereadaprintedtext,oureyesmoveacrossapageinshort,jerkymovement.Werecognize
除哪项外,均是槟榔的功效()。
交易性金融负债初始确认时,应当按照()计量。
根据出入境管理相关法律法规,有下列()情形之一的外国人,边防检查机关有权阻止出境,并依法处理。
某电子出版物的编辑在发稿时误将一些中间过渡文件作为定稿文件刻录到CD-R上,以致已经制成的翻录母盘全部报废。由此发生的费用在进行本量利分析时应列入()。
请以“幼儿园的素质教育”为主题,写一篇论文。要求观点明确,论述具体,条理清楚,语言流畅。不少于800字。
设z=z(x,y)有二阶连续偏导数,且满足=0,若有z(x,2x)=x,z’(x,2x)=z’(x,y)|y=2x=x2,求z"11(x,2x)与z"12(x,2x).
判断字符串s1是否大于字符串s2,应该使用()。
A、Shetookcareofit.B、Shereportedittoothers.C、Shedidnothingaboutit.D、Shehaditrepaired.C女士说,洗碗机坏了,她们向房东太太(Ms.Cor
最新回复
(
0
)