首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β1为三维列向量组,且α1,α2与β1,β2都线性无关. (1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (2)设,求出可由两组向量同时线性表示的向量.
设α1,α2,β1,β1为三维列向量组,且α1,α2与β1,β2都线性无关. (1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (2)设,求出可由两组向量同时线性表示的向量.
admin
2018-04-18
55
问题
设α
1
,α
2
,β
1
,β
1
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关.
(1)证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示;
(2)设
,求出可由两组向量同时线性表示的向量.
选项
答案
(1)因为α
1
,α
2
,β
1
,β
2
线性相关,所以存在不全为零的常数k
1
,k
2
,l
1
,l
2
,使得 k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0,或k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
. 令γ=k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
因为α
1
,α
2
与β
1
,β
2
都线性无关,所以k
1
,k
2
及l
1
,l
2
都不全为零,所以γ≠0. (2)令k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0, [*] 所以γ=kα
1
-3kα
2
=-kβ
1
+0β
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mjk4777K
0
考研数学二
相关试题推荐
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:
已知λ1=6,λ2=λ3=3是实对称矩阵A的三个特征值.且对应于λ2=λ3=3的特征向量为α2=(-1,0,1)T,α3=(1,-2,1)T,求A对应于λ1=6的特征向量及矩阵A.
若0<x1<x2<2,证明
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设A为3阶矩阵,P为3阶可逆矩阵,且,若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
设α1,α2,α3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设(X,Y)是二维离散型随机向量,其分布为P(X=xi,Y=yj}=pij(i=1,2,…,m;j=1,2,…,n),称(pij)m×n为联合概率矩阵.证明:X与Y相互独立的充要条件是(pij)m×n的秩为1.
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
矩阵相似的充分必要条件为
随机试题
在材料采购总最不变的前提下,从降低储存保管费用的角度考虑,确定经济采购批量的原则是()
发热、乏力、厌食、恶心、呕吐、腹痛皮肤黄染、瘙痒,肝大,粪便色浅
年长儿患链球菌性上呼吸道感染后可引起()。
钱某于1998年1月至3月先后在某市居民住宅小区盗窃财物。同年4月,在销赃时被公安机关抓获。在关押期间,钱某在无人指控和司法机关尚未掌握其犯奸淫幼女罪的情况下,主动交代了此罪行。后经查证,钱某交代奸淫幼女的罪行完全属实。问:钱某主动交代奸淫幼女的罪行属于:
建筑基地机动车道路与城市道路连接时,坡度大于多少时需设置缓冲段?
“规定公司必须按照一定的比例和基数提取各种公积金,股利只能从企业的可供股东分配利润中支付”所体现的分配制约因素是()。
最早以马克思主义为基础探讨教育问题的教育家是()。
人民警察录用考试工作由()统一组织实施。
“同一个世界、同一个梦想”,你报考法检公务员的梦想与理想是什么?
Psychologiststakecontrastiveviewsofhowexternalrewards,from【C1】______praisetocoldcash,affectmotivationandcreativit
最新回复
(
0
)