首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶正定矩阵,证明:|E+A|>1.
设A是n阶正定矩阵,证明:|E+A|>1.
admin
2021-11-15
34
问题
设A是n阶正定矩阵,证明:|E+A|>1.
选项
答案
方法一 因为A是正定矩阵,所以存在正交阵Q,使得Q
T
AQ=[*] 其中λ
1
>0,λ
2
>0,…,λ
n
>0,因此Q
T
(A+E)Q=[*] 于是|Q
T
(A+E)Q|=|A+E|=(λ
1
+1)(λ
2
+1)…(λ
n
+1)>1. 方法二 因为A是正定矩阵,所以A的特征值λ
1
>0,λ
2
>0,…,λ
n
>0,因此A+E的特征 值为λ
1
+1>1,λ
2
+1>1,…,λ
n
+1>1,故|A+E|=(λ
1
+1)(λ
2
+1)…(λ
n
+1)>1.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mly4777K
0
考研数学二
相关试题推荐
设f’(lnx)=求f(x).
设.证明:当nπ≤x﹤(n+1)π时,2n≤S(x)﹤2(n+1).
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设A为m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()。
设A,B都是三阶矩阵,A相似于B,且|E-A|=|E-2A|=E-3A|=0,则|B-1+2E|=________.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A。
设A是3阶实对称矩阵,λ1,λ2,λ3是A的3个特征值,且满足α≥λ1≥λ2≥λ3≥b,若A一μE是正定矩阵,则参数μ应满足()
设A为可逆的实对称矩阵,则二次型XTAX与XTA-1X().
关于二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
二次型f(x1,x2,x3)=x12+4x22+4x32一4x1x2+4x1x3—8x2x3的规范形为()
随机试题
Allemployeetravelexpensereportsmustbe________bythedepartmentsupervisor.
结合具体艺术作品论述艺术形象的特征。
就椎管内肿瘤而言,下述意见中的错误论点是
下列不属于医疗事故的是
甲公司经营空调买卖业务,并负责售后免费为客户安装。乙为专门从事空调安装服务的个体户。甲公司因安装人员不足,临时叫乙自备工具为其客户丙安装空调,并约定了报酬。乙在安装中因操作不慎坠楼身亡。下列哪些说法是正确的?()
可撤销的合同在撤销前,属于( )合同。
2000年11月7日国务院第296号令发布《煤矿安全监察条例》,自()起施行。
替补训练的优缺点是()。
唐代著名画家吴道子被称为画圣,其代表作有《女史箴图》《洛神赋图》等,擅画神话人物。()
45
最新回复
(
0
)