首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶正定矩阵,证明:|E+A|>1.
设A是n阶正定矩阵,证明:|E+A|>1.
admin
2021-11-15
33
问题
设A是n阶正定矩阵,证明:|E+A|>1.
选项
答案
方法一 因为A是正定矩阵,所以存在正交阵Q,使得Q
T
AQ=[*] 其中λ
1
>0,λ
2
>0,…,λ
n
>0,因此Q
T
(A+E)Q=[*] 于是|Q
T
(A+E)Q|=|A+E|=(λ
1
+1)(λ
2
+1)…(λ
n
+1)>1. 方法二 因为A是正定矩阵,所以A的特征值λ
1
>0,λ
2
>0,…,λ
n
>0,因此A+E的特征 值为λ
1
+1>1,λ
2
+1>1,…,λ
n
+1>1,故|A+E|=(λ
1
+1)(λ
2
+1)…(λ
n
+1)>1.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mly4777K
0
考研数学二
相关试题推荐
设f’(lnx)=求f(x).
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.证明:.
设A是m×n矩阵,B是n×m矩阵,则()。
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是()。
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。设,求出可由两组向量同时线性表示的向量。
设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,...,Ak-1a线性无关。
设A=(a1,a2,...,am)其中a1,a2,...,am是n维列向量,若对于任意不全为零的常数k1,k2,...,km,皆有k1a1+k2a2,...+kmam≠0,则()。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
设二次型f(x1,x2,x3)=2x12+2x22+2x32+2ax1x2+2ax2x3+2ax1x3,若a是使A正定的正整数,用正交变换把二次型f(x1,x2,x3)化为标准型,并写出所用正交变换。
设A为3阶实对称矩阵,α1=(1,﹣1,﹣1)T,α2=(﹣2,1,0)T是齐次线性方程Ax=0的基础解系,且矩阵A-6E不可逆,则(Ⅰ)求齐次线性方程组(A-6E)x=0的通解;(Ⅱ)求正交变换x=Qy将二次型xTAx化为标准形;(Ⅲ)求(A-3E
随机试题
外敷有发泡作用,皮肤过敏者忌用的药物是
盐酸氯丙嗪“有关物质”项主要是检查
下述哪项不是放置节育环的禁忌证
下列不属于麦克里兰的三重需要理论中的需要的是()。
根据合伙企业法律制度的规定,下列行为中,禁止由有限合伙人实施的是()。(2015年)
人们看到鸟儿的飞翔发明了飞机,看到鱼儿游水发明了潜水艇,这类创造活动的心理影响机制是()
反腐:倡廉
设n为非负整数,则|n一1|+|n—2|+…+|n一100|的最小值是[].
Weshouldalwaysbearinmindthat______decisionsoftenresultinseriousconsequences.
Itis(advise)______foryoutokeepawayfromsaltyfoodbecauseofyourhighbloodpressure.
最新回复
(
0
)