首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,且α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
已知四阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,且α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
admin
2019-05-08
107
问题
已知四阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
2
,α
3
,α
4
线性无关,且α
1
=2α
2
-α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组AX=β的通解.
选项
答案
解一 因α
2
,α
3
,α
4
线性无关及α
1
=2α
2
-α
3
=2α
2
-α
3
+0α
4
,故秩([α
1
,α
2
,α
3
,α
4
])=秩(A)=3.于是AX=0的一个基础解系只包含一个解向量,将AX=0及AX=β分别写成列向量组的形式,即 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0, ① x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β. ② 今已知 α
1
—2α
2
+α
3
=α
1
—2α
2
+α
3
+0α
4
=0, ③ 将式③与式①比较知,齐次方程组①的一个解向量为α=[1,-2,1,0]
T
. 又将α
1
+α
2
+α
3
+α
4
=β与方程组②比较知,方程组②的一个特解为η=[1,1,1,1]
T
,故AX=β的通解为 kα+η=k[1,-2,1,0]
T
+[1,1,1,1,1] (k为任意常数). 解二 令X=[x
1
,x
2
,x
3
,x
4
]
T
,则由AX=[α
1
,α
2
,α
3
,α
4
][x
1
,x
2
,x
3
,x
4
]
T
=β得到 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β=α
1
+α
2
+α
3
+α
4
. 将α
1
=2α
2
-α
3
代入上式整理后,得到 (2x
1
+x
2
-3)α
2
+(-x
1
+x
3
)α
3
+(x
4
-1)α
4
=0. 因α
2
,α
3
,α
4
线性无关,故 [*] 因[*]由基础解系的简便求法即得方程组④对应的齐次方程组的基础解系仅含一个解向量α=[1,-2,1,0]
T
,方程组④的一个特解为β=[0,3,0,1]
T
,故方程组④即原方程组的通解为 X=cα+β=c[1,-2,1,0]
T
+[0,3,0,1]
T
, c为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/MsJ4777K
0
考研数学三
相关试题推荐
求级数的收敛域与和函数.
.
求.
讨论函数f(x)=(x>0)的连续性.
设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为()
设齐次线性方程组,有非零解,且A=为正定矩阵,求a,并求当|X|=时XTAX的最大值.
设A为n阶矩阵,下列结论正确的是().
设an=,对任意的参数λ,讨论级数的敛散性,并证明你的结论.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
随机试题
慢性消耗性疾病时,下列哪些细胞可出现脂褐素
黄色泡沫样脓性白带常见于
阳黄患者,经治黄疸消退后,症见脘腹作胀,胁肋臆痛,不思饮食,肢体困倦,大便时秘时溏,舌苔薄白,脉弦细。治疗宜用
新药监测期内的药品应报告该药品发生的
平整度测试方法有()。
下列说法正确的是()。
下列句子中,有语病的一项是()。
下列关于“三农”问题表述有错误的一项是()。
下列国际单位制中对应关系错误的是()。
自我实现预期:当人们对后果有期望或期待时,就会引发某种行为,预期可以通过自我暗示或他人暗示形成自我激励或他人激励,对激发与调动潜在的能力起到一定的作用。积极的预期会产生积极的结果,消极的预期则产生消极的结果。下列现象不属于“自我实现预期”的是()。
最新回复
(
0
)