首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在[0,1]上连续,在(0,1)内可导。且f(0)=0,f(1)=1. 证明: (1)存在ξ∈(0,1)使得f(ξ)=1—ξ; (2)存在两个不同的点η,ζ∈(0,1)使得f’(η)f’(ζ)=1.
已知函数f(x)在[0,1]上连续,在(0,1)内可导。且f(0)=0,f(1)=1. 证明: (1)存在ξ∈(0,1)使得f(ξ)=1—ξ; (2)存在两个不同的点η,ζ∈(0,1)使得f’(η)f’(ζ)=1.
admin
2021-01-19
44
问题
已知函数f(x)在[0,1]上连续,在(0,1)内可导。且f(0)=0,f(1)=1.
证明:
(1)存在ξ∈(0,1)使得f(ξ)=1—ξ;
(2)存在两个不同的点η,ζ∈(0,1)使得f’(η)f’(ζ)=1.
选项
答案
(1)令F(x)=f(x)-1+x,则F(x)在[0.1]上连续,且F(0)=-1<0,F(1)=1>0,于是由介值定理知,存在ξ∈(0,1)使得F(∈)=0,即f(ξ)=1-ξ. (2)在[0,ξ]和[ξ,1]上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点η∈(0,ξ),ζ∈(ξ,1),使得[*] 于是[*]
解析
(1)显然用闭区间上连续函数的介值定理;(2)为双介值问题,可考虑用拉格朗日中值定理,但应注意利用(1)的结论.
转载请注明原文地址:https://kaotiyun.com/show/Mt84777K
0
考研数学二
相关试题推荐
求下列极限:
设f(x)具有一阶连续导数,f(0)=0,且表达式[xy(1+y)一f(x)y]dx+[f(x)+x2y]dy为某二元函数u(x,y)的全微分.求f(x);
设(x)=(Ⅰ)若f(x)处处连续,求a,b的值;(Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
求函数的间断点并指出其类型.
求极限
设f(x)在(a,b)内可导,证明:,x0∈(a,b)且x≠x0时,f’(a)在(a,b)单调减少的充要条件是f(x0)+f’(x0)(x-x0)>f(x).(*)
计算其中Ω为x2+y2+z2≤1所围成的区域.
求极限。
设y1(x),y2(x)是微分方程y"+py’+qy=0的解,则由y1(x),y2(x)能构成方程通解的充分条件是().
随机试题
治疗寒闭神昏的要药是
行政诉讼撤销判决适用于()。
总体施工顺序是指项目工程内()之间的施工顺序。
“库存现金”科目与“银行存款”科目是一对固定的对应科目。()
关于中国基金销售机构在产品策略方面的不足之处,主要体现在()。Ⅰ.产品设计同质化Ⅱ.市场细分不到位Ⅲ.不同风险收益特征的产品线不足Ⅳ.产品定位不明确
地表环境中各现象之间都是相互联系的,当某现象发生变化时就会给其他现象带来影响,甚至发生一系列的变化。读图回答问题。依据图示,位于图中心的(X)是指()。
中小学教师职业道德修订的基本原则包括()。
公安机关、人民检察院在办理刑事案件过程中依照法律进行的专门调查工作和有关的强制性措施属于()。
下列关于计费管理的说法错误的是_______。
人们将以下哪个作为硬件基本部件的计算机称为第1代计算机?
最新回复
(
0
)