首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex. 求曲线y=f(x2)∫0xf(-t2)dt的拐点.
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex. 求曲线y=f(x2)∫0xf(-t2)dt的拐点.
admin
2019-06-28
52
问题
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2e
x
.
求曲线y=f(x
2
)∫
0
x
f(-t
2
)dt的拐点.
选项
答案
曲线方程为[*] 令y’’=0得x=0.下面证明x=0是y’’=0唯一的解,当x>0时,2x>0,2(1+2x
2
)e
x2
∫
0
x
e
-t2
dt>0,可知y’’>0:当x<0时,2x<0,2(1+2x
2
)e
-t2
∫
0
x
e
-t2
dt<0,可知y’’<0.可知x=0是y’’=0唯一的解.同时,由上述讨论可知曲线y=f(x
2
)∫
0
x
[一t
2
)dt,在x=0左右两边的凹凸性相反,可知(0,0)点是曲线y=(x
2
)=∫
0
x
f(一t
2
)dt唯一的拐点.
解析
转载请注明原文地址:https://kaotiyun.com/show/Z4V4777K
0
考研数学二
相关试题推荐
椭球面S1是椭圆=1绕x轴旋转一周而成,圆锥面S2是过点(4,0)且与椭圆=1相切的直线绕x轴旋转一周而成。求S1及S2的方程;
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使(ξ1)=f(ξ2)=0。
已知齐次线性方程组有通解k1(2,一1,0,1)T+k2(3,2,1,0)T,则方程组的通解是__________。
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是()
设。当实数a为何值时,方程组Ax=b有无穷多解,并求其通解。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,ξ1,…,ξn-r线性无关;
求不定积分
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵,使得QTAQ=。
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线l:y(x)上的任意一点。l在P处的切线与y轴相交于点(0,Yp),法线与x轴相交于点(Xp,0),若Xp=Yp,求l上点的坐标(x,y)满足的方程。
随机试题
前列腺囊肿的超声表现是
中毒性表皮坏死松解症过敏性接触性口炎(苔藓样变)
5个月婴儿,人工喂养。平时易惊,多汗,睡眠少。近3日咳嗽、低热。今晨突然双眼凝视,手足抽动。查体:枕后有乒乓球感。该患儿止抽后的适宜处理是
隧道注浆材料应满足()要求。
为防止挖掘土石方坍塌造成的事故,严禁采用掏挖的操作方法,槽、坑、沟边1米以内不得堆土、堆料、停置机具;槽、坑、沟边与建筑物、构筑物的距离不得小于________米,特殊情况必须采用有效技术措施,并上报上级安全、技术部门审查同意后方准施工。(
价值观是世界观的基础。()
2021年5月13日,国家疾病预防控制局正式挂牌。国家疾病预防控制局的成立意味着疾控机构职能从单纯预防控制疾病向()转变。
Today,some30%ofsmallbusinessownersdon’thaveaWebpresenceatall,whilethevastmajoritywhodoarewatchingtheirsit
在下列模式中,能够给出数据库物理存储结构与物理存取方法的是( )。
Somestudentsarenotadequatelypreparedforcollege.Shouldweturnthemaway?Deceivethem?Ormodifyourproduct?Americans
最新回复
(
0
)