首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
连续型随机变量X1与X2相互独立,且方差均存在,X1与X2的概率密度分别为f1(x)与f2(x)。随机变量Y1的概率密度为fY1(y)=[f1(y)+f2(y)],随机变量Y2=(X1+X2),则( )
连续型随机变量X1与X2相互独立,且方差均存在,X1与X2的概率密度分别为f1(x)与f2(x)。随机变量Y1的概率密度为fY1(y)=[f1(y)+f2(y)],随机变量Y2=(X1+X2),则( )
admin
2019-05-12
57
问题
连续型随机变量X
1
与X
2
相互独立,且方差均存在,X
1
与X
2
的概率密度分别为f
1
(x)与f
2
(x)。随机变量Y
1
的概率密度为f
Y1
(y)=
[f
1
(y)+f
2
(y)],随机变量Y
2
=
(X
1
+X
2
),则( )
选项
A、E(Y
1
)> E(Y
2
),D(Y
1
)>D(Y
2
)
B、E(Y
1
)=E(Y
2
), D(Y
1
)=D(Y
2
)
C、E(Y
1
)=E(Y
2
),D(Y
1
)<D(Y
2
)
D、E(Y
1
)=E(Y
2
),D(Y
1
)>D(Y
2
)
答案
D
解析
分别计算期望E(Y
1
),E(Y
2
),E(Y
1
2
),E(Y
2
2
),得出E(Y
1
),E(Y
2
)之间的关系;将E(Y
1
2
)和E(Y
2
2
)作差,利用方差的定义式判断出方差的大小。
由于E(Y
1
)=∫
—∞
+∞
y.
[f
1
(y)+f
2
(y)]dy=
[E(X
1
)+E(X
2
)],
E(Y
2
)=
E(X
1
+X
2
)=
[E(X
1
)+E(X
2
)],
故E(Y
1
)=E(Y
2
)。
E(Y
1
2
)=∫
—∞
+∞
y
2
.
[f
1
(y)+f
2
(y)]dy=
[E(x
1
2
)+E(X
2
2
)],
E(Y
2
2
)=
E(X
1
+X
2
)
2
=
[E(X
1
2
)+E(X
2
2
)]+
E(X
1
).E(X
2
),
则 E(Y
1
2
)一E(Y
2
2
)=
E (X
1
—X
2
)
2
>0。
故D(Y
1
)=E(Y
1
2
)一[(E(Y
1
)]
2
>D(Y
2
)=E(Y
2
2
)一[E(Y
2
)]
2
。答案为D。
转载请注明原文地址:https://kaotiyun.com/show/Mw04777K
0
考研数学一
相关试题推荐
求.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:|E+A+A2+…+An|的值.
设二次型f(x1,x2,x3)=XTAX,tr(A)=1,又B=且AB=O.求矩阵A.
设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().
设f(x)连续,且F(x)=∫0x(x一2t)f(t)dt.证明:若f(x)是偶函数,则F(x)为偶函数;
若正项级数都收敛,证明下列级数收敛:;
设二维随机变量(X,Y)的联合密度函数为f(x,y)=则a=__________,P(X>Y)=__________.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn.证明方程组AX=b有无穷多个解;
求极限.
证明方程lnx=dx在(0,+∞)内有且仅有两个根.
随机试题
免疫小鼠脾细胞采取时的免疫途径多为
A.2000mlB.1500mlC.800mlD.300mlE.1000ml
急性牙槽脓肿经哪种排脓途径排脓后患牙的预后较差()
用治瘰疬瘿瘤的味是
在某地方人民政府制定的行政规章中明确规定,将对某一违法行为的罚款权“授权”给某一组织。根据这一规章行使行政处罚权的组织( )。
世界银行在其标准咨询招标文件格式中所建议的“TO旷通常包括的内容有()。
下列关于出让方式取得国有土地使用权建设用地转让条件的说法,正确的是()。
我国对未成年人权益的保护以()为基础。
某招聘会在入场前若干分钟就开始排队,每分钟来的求职人数一样多,从开始入场到等候入场的队伍消失,同时开4个入口需30分钟,同时开5个入口需20分钟。如果同时打开6个人口,需多少分钟?
在一些西方国家,有些父母准备克隆孩子,目的是进行一些非致命器官的移植。
最新回复
(
0
)