首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
连续型随机变量X1与X2相互独立,且方差均存在,X1与X2的概率密度分别为f1(x)与f2(x)。随机变量Y1的概率密度为fY1(y)=[f1(y)+f2(y)],随机变量Y2=(X1+X2),则( )
连续型随机变量X1与X2相互独立,且方差均存在,X1与X2的概率密度分别为f1(x)与f2(x)。随机变量Y1的概率密度为fY1(y)=[f1(y)+f2(y)],随机变量Y2=(X1+X2),则( )
admin
2019-05-12
41
问题
连续型随机变量X
1
与X
2
相互独立,且方差均存在,X
1
与X
2
的概率密度分别为f
1
(x)与f
2
(x)。随机变量Y
1
的概率密度为f
Y1
(y)=
[f
1
(y)+f
2
(y)],随机变量Y
2
=
(X
1
+X
2
),则( )
选项
A、E(Y
1
)> E(Y
2
),D(Y
1
)>D(Y
2
)
B、E(Y
1
)=E(Y
2
), D(Y
1
)=D(Y
2
)
C、E(Y
1
)=E(Y
2
),D(Y
1
)<D(Y
2
)
D、E(Y
1
)=E(Y
2
),D(Y
1
)>D(Y
2
)
答案
D
解析
分别计算期望E(Y
1
),E(Y
2
),E(Y
1
2
),E(Y
2
2
),得出E(Y
1
),E(Y
2
)之间的关系;将E(Y
1
2
)和E(Y
2
2
)作差,利用方差的定义式判断出方差的大小。
由于E(Y
1
)=∫
—∞
+∞
y.
[f
1
(y)+f
2
(y)]dy=
[E(X
1
)+E(X
2
)],
E(Y
2
)=
E(X
1
+X
2
)=
[E(X
1
)+E(X
2
)],
故E(Y
1
)=E(Y
2
)。
E(Y
1
2
)=∫
—∞
+∞
y
2
.
[f
1
(y)+f
2
(y)]dy=
[E(x
1
2
)+E(X
2
2
)],
E(Y
2
2
)=
E(X
1
+X
2
)
2
=
[E(X
1
2
)+E(X
2
2
)]+
E(X
1
).E(X
2
),
则 E(Y
1
2
)一E(Y
2
2
)=
E (X
1
—X
2
)
2
>0。
故D(Y
1
)=E(Y
1
2
)一[(E(Y
1
)]
2
>D(Y
2
)=E(Y
2
2
)一[E(Y
2
)]
2
。答案为D。
转载请注明原文地址:https://kaotiyun.com/show/Mw04777K
0
考研数学一
相关试题推荐
设a为任意常数,则级数().
设μ=f(x,y,z)有连续的偏导数,y=y(x),z=z(x)分别由方程exy一y=0与ez一xz=0确定,求.
(x2+xy—x)dxdy=________,其中D由直线y=x,y=2x及x=1围成.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn.求方程组AX=b的通解.
设随机变量(X,Y)的分布函数为F(x,y),用它表示概率P(一X<a,Y<y),则下列结论正确的是().
设A是三阶实对称矩阵,r(A)=1,A2-3A=O,设(1,1,一1)T为A的非零特征值对应的特征向量.求A的特征值;
设X,Y为两个随机变量,E(X)=E(Y)=1,D(X)=9,D(Y)=1,且ρXY=,则E(X一2Y+3)2=__________.
设f(x)在[a,b](a>0)上连续,在(a,b)内可导,且f(a)=f(b)=1,证明:存在点ξ,η∈(a,b),使得
设随机变量X和Y的联合密度为试求事件“X大于Y”的概率P{X>Y};
若f(x,y)为关于x的奇函数,且积分区域D关于Y轴对称,则当f(x,y)在D上连续时,必有f(x,y)dxdy=______.
随机试题
在狭窄的空间内焊接时,应采取局部通风的换气排尘装置。()
一般妊娠晚期妇女,24小时尿蛋白定量不应多于:
使用磁共振成像对比剂合并哪项技术最有利于病灶的显示
A、 B、 C、 D、 E、 D
票据行为成立的有效条件是指( )。
下列说法中,符合动漫产业增值税税收优惠政策的是()。
Thaiauthoritieshavebeenurgedtoseetoitthatcondominiums,apartmenthousesandotherlodgingsavailabletotouriststhrou
衡量一个教师是否成熟的主要标志是能否自觉地关注()。
经济发展是中国特色社会主义的本质属性,是国家富强、民族振兴、人民幸福的重要保证。()
_______arecentsecurityalert,personalbelongingsshouldnotbeleftunattended.
最新回复
(
0
)