首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
admin
2018-05-23
65
问题
设向量组α
1
,…,α
n
为两两正交的非零向量组,证明:α
1
,…,α
n
线性无关,举例说明逆命题不成立.
选项
答案
令k
1
α
1
+…+k
n
α
n
=0,由α
1
,…,α
n
两两正交及(α
1
,k
1
α
1
+…+k
n
α
n
)=0,得k
1
(α
1
,α
1
)=0,而(α
1
,α
1
)=‖α
1
‖
2
>0,于是k
1
=0,同理可证k
2
=…k
n
=0,故α
1
,…,α
n
线性无关,令[*],显然α
1
,α
2
线性无关,但α
1
,α
2
不正交.
解析
转载请注明原文地址:https://kaotiyun.com/show/F9g4777K
0
考研数学一
相关试题推荐
为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.201,下
从一正态总体中抽取容量为10的样本,设样本均值与总体均值之差的绝对值在4以上的概率为0.02,求总体的标准差(Φ(2.33)=0.99).
设A为n阶方阵,且A的行列式|A|=a≠0,而A*是A的伴随矩阵,则|A*|等于()
求曲线在点处的切线方程和法平面方程.
设矩阵A=(I)求a,b的值;(1I)求可逆矩阵P,使P—1AP为对角矩阵.
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为(1)将β用ξ1,ξ2,ξ3线性表出.(2)求Anβ(n为自然数).
若矩阵A=相似予对角矩阵A,试确定常数口的值;并求可逆矩阵P使P—1AP=A.
设函数f(t)在[0,+∞)上连续,且满足方程求f(t).
设Ω={(x,y,z)|x2+y2≤3z,1≤z≤4},求三重积分
设f(x)具有一阶连续导数,f(0)=0,且微分方程[xy(1+y)一f(x)y]dx+[f(x)+x2y]dy=0为全微分方程.(Ⅰ)求f(x);(Ⅱ)求该全微分方程的通解.
随机试题
设D由0≤x≤1,一1≤y≤1确定,则二重积分=__________.
患者,男性,31岁,B超可见肾上盏结石0.6cm。经解痉、中西药治疗和大量饮水后出现尿频、尿急、尿痛。现结石的位置应在
我国实行家庭联产承包经营为基础、统分结合的双层经营体制,其中统一经营层次的主体是()。
甲房地产开发公司向乙企业销售一处房地产,则对于此笔交易,甲应该缴纳的税种有()。
根据购买力平价理论,通货膨胀高的国家货币汇率()。
人的身心发展是指()。
2006年全国共有生产力促进中心1331家,比上年增加61家。生产力促进中心在全国分布广泛,但地区分布不均,四川、山西、黑龙江、广西、福建等地较多,分别为136、99、96、94、83家。边远省份数量较少,如海南省仅有1家,云南、西藏、青海各2家。
论述日耳曼人迁徙的原因、基本过程及影响。(中央民族大学2014年历史学科基础真题)
Java中对象加锁具有【】性。
A、他们之间的关系很不好B、他们之间没有话说C、他们之间的关系非常密切D、他们之间互相不认识C
最新回复
(
0
)