首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,且存在正交矩阵Q=,又令B=A2+2E,求矩阵B.
设A为三阶实对称矩阵,且存在正交矩阵Q=,又令B=A2+2E,求矩阵B.
admin
2019-05-27
75
问题
设A为三阶实对称矩阵,且存在正交矩阵Q=
,又令B=A
2
+2E,求矩阵B.
选项
答案
由Q
T
AQ=[*]得A的特征值为λ
1
=2,λ
2
=-1,λ
3
=1,且λ
1
=2对应的 的特征向量为[*] 由A
T
=A得B
T
=(A
2
+2E)
T
=(A
2
)
T
+2E=A
2
+2E=B,即B为实对称矩阵 显然B的特征值为λ
1
=6,λ
2
=λ
3
=3,且B相应于特征值λ
1
=6的特征向量为[*] 设B的相应于λ
2
=λ
3
=3的特征向量为[*] 因为实对称矩阵不同特征值对应的特征向量正交,所以[*]即x
1
+x
2
+x
3
=0, 于是B的相应于特征值λ
2
=λ
3
=3的线性无关的特征向量为[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/N0V4777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,下列命题中正确的是()
设A是m×乃矩阵,B是n×m矩阵,则线性方程组(AB)x=0()
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设向量组(I):α1=(a11,a12,a13),α2=(a21,a22,a23),α3=(a31,a32,a33);向量组(Ⅱ):β1=(a11,a12,a13,a14),β2=(a21,a22,a23,a24),β3=(a31,a32,a33,a34
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),令向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则().
设平面图形A由x2+y2≤2x及y≥x所确定,则A绕直线x=2旋转一周所得旋转体的体积公式为().
设f(x)在[0,2]上二阶可导,且f"(x)<0,f’(0)=1,f’(2)=-1,f(0)=f(2)=1.证明:2≤∫02f(x)dx≤3.
求I=dχdY,其中D是由抛物线y2=χ,直线χ=0,y=1所同成.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小。
设k>0,讨论常数k的取值,使f(χ)=χlnχ+k在其定义域内没有零点、有一个零点及两个零点.
随机试题
无追索权的项目融资最早出现于()
甲与乙的承包地相邻,甲地靠着排水沟,乙地排水需要流经甲地入沟。乙地的水稻因大雨需要排水,而甲地种的是棉花,乙提出从甲地挖一水渠排水,并答应给甲一定的补偿,但甲怕乙的排水会伤害自己的棉花,拒不同意。于是乙诉至法院。法院应()。A.支持甲,判决乙不得
【背景资料】某建设工程有限集团公司总承包了一高级宾馆的全部施工任务。其中的土建及装修工程由本单位的下属独立法人A工程公司承担,通风与空调工程分包给了B专业承包公司,上下水及消防工程分包给了C专业承包公司,建筑电气及建筑智能化工程分包给了D专业承包公司。由
按照《外商投资企业和外国企业所得税法》的有关规定,外商投资企业和外国企业所得税的征税对象与范围包括()
(2019年)资产负债表日,企业持有的交易性金融资产的公允价值变动应计入投资收益。()
下列说法错误的是()。
下列选项中,属于实践的基本形式的有
(2009年下半年)以下关于投标文件送达的叙述,(33)是错误的。
A、 B、 C、 D、 C
"Themoregadgetsthereare,the【C1】______thingsseemtoget."saidHonoreErvin,co-authorofTheEtiquetteGirls:ThingsYou
最新回复
(
0
)