首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,l,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示. (I)求a的值; (II)将β1,β2,β3用α1,α2,α3线性
)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,l,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示. (I)求a的值; (II)将β1,β2,β3用α1,α2,α3线性
admin
2016-04-11
27
问题
)设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,l,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,α)
T
线性表示.
(I)求a的值;
(II)将β
1
,β
2
,β
3
用α
1
,α
2
,α
3
线性表示.
选项
答案
(I)4个3维向量β
1
,β
2
,β
3
,α
i
线性相关(i=1,2,3),若β
1
,β
2
,β
3
线性无关,则α
i
可由β
1
,β
2
,β
3
线性表示(i=1,2,3),这与题设矛盾,于是β
1
,β
2
,β
3
线性相关,从而 [*] 于是a=5.此时,α
1
不能由向量组β
1
,β
2
,β
3
风线性表示. (Ⅱ)令矩阵A=[α
1
α
2
α
3
|β
1
β
2
β
3
],对A施行初等行变换从而,β
1
=2α
1
+4α
2
一α
3
,β
2
=α
1
+2α
2
,β
3
=5α
1
+10α
2
—2α
3
.
解析
本题主要考查向量空间的基本知识及求线性表示式的基本运算.注意,3个线性无关的3维向量必可作为3维向量空间的基,从而可线性表示任一3维向量,由此立即可知题给的向量组β
1
,β
2
,β
3
风线性相关,于是由矩阵[β
1
β
2
β
3
]的秩小于3或行列式|β
1
β
2
β
3
|=0,便可求出a来.
转载请注明原文地址:https://kaotiyun.com/show/N5w4777K
0
考研数学一
相关试题推荐
设曲线L的极坐标方程为r=r(θ),M(r,θ)为任一点,M0(2,0)为L上一定点.若极径OM0,OM与曲线L所围成的曲边扇形面积值等于L上M0,M两点间弧长值的一半,求曲线L的方程.
微分方程的通解为().
过点(1,0)且切线斜率为的曲线与坐标轴所围成的图形的面积为______。
设z=z(x,y)是由f(y-x,yz)=0确定的,其中f对各个变量有连续的二阶偏导数,求
将展开成x的幂级数,并证明
设Σ是平面(a,b,c>0)在第一象限部分的上侧,则I=x2dydz+y2dzdx+z2dxdy=________.
设积分区域D是由双纽线(x2+y2)2=2xy所围成,则xydxdy=().
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3,经正交变换x=Py化成f=y22+2y32,P是3阶正交矩阵,试求常数α、β.
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=________.
双纽线(x2+y2)2=x2一y2所围成的区域面积可表示为()。
随机试题
“文”的本义是“错画”,即花纹、__________、__________、__________、_____________。
用()可将纸上的图片输入计算机中。
简述股份制及其作用。
乳岩发病与哪个脏器有关
长期工作或停留的房间场所,照明光源的显色指数Ra不宜小于()。
成利公司是一家国有企业,6月26日,经过严格考核,公司招聘了一名出纳小张。小张刚毕业于某财经学院会计系,她是本公司财务科长老张的女儿。由于小张尚未取得会计从业资格证书,故公司领导要求小张在一年内必须取得该资格证书,否则将予以辞退。8月,财务科科长老张根据人
下列会计业务处理中,符合会计信息质量要求中谨慎性要求的是()。
100名学生需要到河对岸去野营,只有一条船,每次最多载5人(其中需1人划船),往返一次需4分钟(来、回各需要2分钟),如果9时整开始渡河,请问,10时21分时,最多可以送()人到对岸?()
日本脱口秀表演家金语楼曾获多项专利。有一种在打火机上装一个小抽屉代替烟灰缸的创意,在某次创意比赛中获得了大奖,备受推祟。比赛结束后,东京的一家打火机制造厂家将此创意进一步开发成产品推向市场,结果销路并不理想。以下哪项如果为真,能最好地解释上面的矛盾?
从语法上分类,“平时、时常、刚刚、刚才"四个词中()属于名词。
最新回复
(
0
)