首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶反对称矩阵, (Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵; (Ⅱ)举一个4阶不可逆的反对称矩阵的例子; (Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
设A是n阶反对称矩阵, (Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵; (Ⅱ)举一个4阶不可逆的反对称矩阵的例子; (Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
admin
2022-04-08
79
问题
设A是n阶反对称矩阵,
(Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A
*
是对称矩阵;
(Ⅱ)举一个4阶不可逆的反对称矩阵的例子;
(Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
选项
答案
(Ⅰ)按反对称矩阵定义:A
T
=一A,那么 |A|=|A
T
|=|—A|=(—1)
n
|A|,即[1—(—1)
n
]|A|=0. 若n=2k+1,必有|A|=0.所以A可逆的必要条件是n为偶数. 因A
T
=一A,由(A
*
)
T
=(A
T
)
*
有 (A
*
)
T
=(A
T
)
*
=(一A)
*
. 又因(kA)
*
=k
n—1
A
*
,故当n=2k+1时,有 (A
*
)
T
=(—1)
2k
A
*
=A
*
, 即A
*
是对称矩阵. (Ⅱ)例如,A=[*]是4阶反对称矩阵,且不可逆. (Ⅲ)若λ是A的特征值,有f λE—A J=0,那么 |—λE—A|=|(一λE—A)
T
|=|—λE—A
T
|=|—λE+A| =|一(λE—A)|=(一1)
n
|λE—A|=0, 所以一λ是A的特征值.
解析
转载请注明原文地址:https://kaotiyun.com/show/DBf4777K
0
考研数学二
相关试题推荐
设A是n阶非零矩阵,E是n阶单位矩阵,若A3=0,则().
线性方程组则()
设y=f(x)由cos(xy)+lny—x=1确定,则=().
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则().
设A为n阶可逆矩阵,则下列等式中,不一定成立的是()
若函数u=.其中f是可微函数,且=G(x,y)u,则函数G(x,y)=()
设n阶方阵A、B、C满足关系式ABC=E,则成立
考虑二元函数的下面4条性质:①f(χ,y)在点(χ0,y0)处连续;②f(χ,y)在点(χ0,y0)处的两个偏导数连续;③f(χ,y)在点(χ0,y0)处可微;④f(χ,y)在点(χ0,y0)处两个偏导数存在
A、 B、 C、 D、 A积分域由两部分组成(如图1.5—1).设将D=D1∪D2视为Y型区域,则故应选(A).
双纽线(x2+y2)2=x2-y2所围成的区域面积可用定积分表示为
随机试题
一质量m=0.5kg的质点作平面运动,其运动方程为x=2t2,y=t2+t+l,则质点所受合外力的方向与z轴的夹角为()
王氏《温热经纬》清暑益气汤与李氏《脾胃论》清暑益气汤共同含有的药物是
短暂性脑缺血发作持续的时间最长不超过
我国实行宗教信仰自由政策,在班禅转世灵童寻访领导小组会议上提出的“四个维护”——维护法律尊严、维护人民利益、维护民族团结、维护祖国统一,同宗教信仰自由政策是一致的,关于上述问题正确的是:()。
轿车:汽车
改正下列错别字弛名中外(南京师范大学2015)
_____langueasesdifficultés.
【B1】【B7】
Hefoundhisnewacquaintancetobe________:tryingtounderstandherpersonalitywaslikepeeringintoanunknowndimension.
Americansbelievesomuchinmovingaheadthattheyare【C1】______researching,experimentingandexploring.Theytreattimeas
最新回复
(
0
)