首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5=4A3+E,其中E为3阶单位矩阵. (Ⅰ)验证α是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2007年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5=4A3+E,其中E为3阶单位矩阵. (Ⅰ)验证α是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2016-05-30
89
问题
(2007年)设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2,且α
1
=(1,-1,1)
T
是A的属于λ
1
的一个特征向量.记B=A
5
=4A
3
+E,其中E为3阶单位矩阵.
(Ⅰ)验证α是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B.
选项
答案
(Ⅰ)记矩阵A的属于特征值λ
i
的特征向量为α
i
=(i=1,2,3),由特征值的定义与性质,有A
k
α
i
Bα
1
=(A
5
-4A
3
+E)α
1
=(λ
1
5
-4λ
1
3
+1)α
1
=-2α
1
因α
1
=≠0,故由定义知-2为B的一个特征值且α
1
=为对应的一个特征向量.类似可得 Bα
2
=(λ
2
5
-λ
2
3
+1)α
2
=α
2
Bα
3
=(λ
3
5
-λ
3
3
+1)α
3
=α
3
因为A的全部特征值为λ
1
,λ
2
,λ
3
,所以B的全部特征值为λ
i
5
-4λ
i
3
+1(i=1,2,3),即B的全部特征值为-2,1,1. 因-2为B的单特征值,故B的属于特征值-2的全部特征向量为k
1
α
1
,其中k
1
是不为零的任意常数. 设χ=(χ
1
,χ
2
,χ
3
)
T
为B的属于特征值1的任一特征向量.因为A是实对称矩阵,所以B也是实对称矩阵.因为实对称矩阵属于不同特征值的特征向量正交,所以有(χ
1
,χ
2
,χ
3
)α
1
=0,即 χ
1
-χ
2
+χ
3
=0 解得该方程组的基础解系为 ξ
2
=(1,1,0)
T
,ξ
3
=(-1,0,1)
T
故B的属于特征值1的全部特征向量为k
2
ξ
2
-k
3
ξ
3
,其中k
2
,k
3
为不全为零的任意常数. (Ⅱ)由(Ⅰ)知α
1
,ξ
2
,ξ
3
为B的3个线性无关的特征向量,令矩阵 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/N734777K
0
考研数学二
相关试题推荐
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵P-1AP属于特征值λ的特征向量是().
对于任意两个随机变量X和Y,若E(XY)=E(X).E(Y),则().
以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的微分方程是________.
函数y=Cx+(其中C为任意常数)对微分方程而言().
求常数项级数的和:
求常数项级数的和:
设数列{an)满足a1=a2=1,且an+1=an+an-1,n=2,3,….证明当|x|<1/2时,级数anxn-1收敛,并求其和函数及系数an.
随机试题
无穷级数的和为________.
关于肾病综合征伴明显水肿者的休息指导,正确的是()
临床上最常见的急性肾衰的病因是
建设工程项目合同按()分类,可分为总价合同、成本加酬金合同和单价合同。
在洪泛区、蓄滞洪区内建设非防洪建设项目,应当就()可能产生的影响作出评价。
下列选项中不可能构成使用假币罪主体的有()。
下列各项中,企业应计入销售费用的是()。(2017年)
对于人工智能来说,这种学习的广度实在是______________,凡是人类社会的东西和事物,都是其学习的对象。但对它未学习过的东西,人工智能就会______________,而且不知道逻辑推理,犯错误和发生事故也在所难免。依次填入画横线部分最恰
事故应急救援预案(简称预案或应急预案)是指政府或企业为降低事故后果的严重程度,以对危险源的评价和事故预测结果为依据,预先制订的事故控制和抢险救灾方案。根据上述定义,下列不属于事故应急救援预案范畴的是()。
方丝弓矫治器的主要特点是()。
最新回复
(
0
)