首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1(x),y2(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y1≠0,y2≠0,则y=c1y1(x)+c2y2(x)(其中c1,c2为任意常数)为该方程通解的充要条件为( ).
设y1(x),y2(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y1≠0,y2≠0,则y=c1y1(x)+c2y2(x)(其中c1,c2为任意常数)为该方程通解的充要条件为( ).
admin
2022-07-21
118
问题
设y
1
(x),y
2
(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y
1
≠0,y
2
≠0,则y=c
1
y
1
(x)+c
2
y
2
(x)(其中c
1
,c
2
为任意常数)为该方程通解的充要条件为( ).
选项
A、y
1
(x)y’
2
(x)-y
2
(x)y’
1
(x)≡0
B、y
1
(x)y’
2
(x)-y
2
(x)y’
1
(x)≠0
C、y
1
(x)y’
2
(x)+y
2
(x)y’
1
(x)≡0
D、y
1
(x)y’
2
(x)-y
2
(x)y’
1
(x)≠0
答案
B
解析
由题意知其充要条件为y
1
(x),y
2
(x)线性无关,
,即
y
1
(x)y’(x)-y
2
(x)y’
1
(x)≠0
转载请注明原文地址:https://kaotiyun.com/show/4DR4777K
0
考研数学三
相关试题推荐
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设向量组α1=线性相关,但任意两个向量线性无关,求参数t.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则().
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
随机试题
一个长方形的永久磁铁,若从中间部位锯开后,则()。
在计算机中可以用来存储二进位信息的有________。
确定Hp(幽门螺杆菌)是否根除的试验应在抗Hp治疗后何时进行
人体饥饿时,可以作为能源的物质有
下列说法正确的是( )。
ICAO是一个非营利的世界性国际货运代理行业组织,代表了由大约40000家货运代理企业、800万~1000万从业人员组成的国际货运代理行业。()
一研究机构最近举行了一次奖金对促进工作效率的作用的调查,结果表明:获得奖金的职工比那些没有获得奖金的职工工作效率平均高出20%。调查内容涉及职工加班的次数、日完成工作量等一些指标。这充分说明奖金对促进职工提高工作效率的作用是很明显的。如果以下(
2022年4月12日,国家发改委公布该委与国家能源局联合印发的《氢能产业发展中长期规划(2021-2035年)》,这是我国首个氢能产业中长期规划。《规划》中对氢的战略定位为()。①氢能是未来国家能源体系的重要组成部分②氢能是持续提升
设f(x)在点x=0的某一邻域内具有二阶连续导数,且,证明级数绝对收敛.
Ourape-menforefathershadnoobviousnaturalweaponsinthestruggleforsurvivalintheopen.Theyhadneitherthepowerfult
最新回复
(
0
)