设f’(x)在[0,1]上连续,且f(1)-f(0)=1,证明:∫01f’2(x)dx≥1.

admin2021-11-25  24

问题 设f’(x)在[0,1]上连续,且f(1)-f(0)=1,证明:∫01f’2(x)dx≥1.

选项

答案由1=f(1)-f(0)=∫01f’(x)dx 得12=1=(∫01f’(x)dx)2≤∫01l2dx∫01f’2(x)dx=∫01f’2(x)dx,即∫01f’2(x)dx≥1.

解析
转载请注明原文地址:https://kaotiyun.com/show/NKy4777K
0

最新回复(0)